Catalog
TRS-80" MODEL IIT Number

26-2200

FORTRAN

™

Badvo Phaoi LI

CUSTOM MANUFACTURED IN USA BY RADIO SHACK, A DIVISION OF TANDY CORR

TG

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A
RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
. CUSTOMER OBLIGATIONS

A. CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the ““Equipment”), and any copies of Radio
Shack software included with the Equipment or licensed separately (the "“Software™) meets the specifications, capacity, capabilities,
versatility, and other requirements of CUSTOMER.

B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its instaliation.

il. RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing
defects. THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER GENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION. The warranty is void if the Equipment’s case or cabinet has been opened, or if the Equipment or Software has been
subjected to improper or abnormal use. f a manufacturing defect is discovered during the stated warranty period, the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retall store, participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of
a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole
expense. RADIO SHACK has no obligation to replace or repair expendable items. B

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this =
paragraph. Software is licensed on an “AS IS” basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a
Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. Except ag grovided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf
of RADIO SHACK.

D. Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

i. LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY; LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
“EQUIPMENT” OR ""SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE “EQUIPMENT" OR "‘SOFTWARE". IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PRGFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING QUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT" OR "‘SOFTWARE".

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY

CI{ISOT?/AQER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "'EQUIPMENT" OR “'SOFTWARE"

INVOLVED.

RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software.

No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years

after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or

Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may
not apply to CUSTOMER.

RADIO SHACK SOFTWARE LICENSE B3

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one computer, subject to the following
provisions:
A, Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software. .
B. Titeto J\Ze medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to
the Software.

CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this

function. 5

CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically

provided in this Software License. Customer is expressly prohibited from disassembling the Software.

CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in

the operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for

TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER’S own use.

F.. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each
one %old or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER.

G. Al copyright notices shall be retained on all copigs of the Software.

APPLICABILITY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER.

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and/or licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary
from state to state.

om

8

) deseeds

T

m o o

TRS-80 °

Model 4 FORTRAN Program:
€) 1983, Microsoft, Inc.
Licensed to Tandy Corporation
All Rights Reserved.

All portions of this software are copyrighted and are the
proprietary and trade secret information of Tandy Corporation
and/or its licensor. Use, reproduction or publication of any
portion of this material without the prior written authorization
by Tandy Corporation is strictly prohibited.

TRSDOS 6 Operating System:

(c) 1983, Logical Systems, Inc.

Licensed to Tandy Corporation
All Rights Reserved.

All portions of this software are copyrighted and are the
proprietary and trade secret information of Tandy Corporation
and/or its licensor. Use, reproduction or publication of any
portion of this material without the prior written authorization
by Tandy Corporation is strictly prohibited.

. Model 4 FORTRAN Manual
©) 1984, Tandy Corporation
All Rights Reserved.

Reproduction or use, without express written permission from
Tandy Corporation and/or its licensor, of any portion of this
manual is prohibited. While reasonable efforts have been taken
in the preparation of this manual to assure its accuracy, Tandy
Corporation assumes no liability resulting from any errors or
omissions in this manual, or from the use of the information
contained herein.

19 987654321

Radio fhaek

TRS-80 °

An Overview of the MODEL 4 Fortran Package

This manual describes how to use your FORTRAN package
(Cat. No. 26-2219) with the TRS-8f operating system
(TRSDOS) .

We assume you know how to program and are familiar with other
computer languages, such as BASIC.

Your FORTRAN manual is in two main sections:

. Operating FORTRAN, an introductory section that describes
the systems in the package and how they interrelate.

. The FORTRAN‘Language, which discusses the statements
and functions of the language.

Radio fhaek

TRS-80 °

Your Model 4 FORTRAN package includes four systems:

5 The Editor, ALEDIT/CMD, for writing and editing
FORTRAN source files on diskette. You can also
use it to edit BASIC programs.

. The Compiler, F8J/CMD, which reads your FORTRAN

source program from diskette, translates it into
relocatable object code, and saves it on diskette.

. The Linker, L8§/CMD, which lets you input the
relocatable object program, execute it (by
linking it with all the subroutines it has

called), and save it on your diskette as a TRSDOS
command file. Your resulting TRSDOS command file

is a complete, independent object program that you
can load and execute easily and quickly from
TRSDOS.

. The Assembler, M8J/CMD, which lets you create
relocatable assembly language subroutines that you can
link to your FORTRAN programs.

These systems are all contained on one diskette.

Important Note: Be sure to make backup copies of your
FORTRAN diskette before proceeding. See your disk system's
owner's manual if you need instructions on how to do this.

Radio Sfhaek

TRS-80 °

This manual assists you in learning TRS-8J FORTRAN, but it
is not a tutorial on FORTRAN programming.

If you are new to FORTRAN and need help learning the
language, we suggest the following books:

1. Microsoft FORTRAN by Paul Chirlian (dilithium, 1981)

2. Guide to FORTRAN-IV Programming by Daniel McCracken
(Wiley, 1965)

3. Ten Statement FORTRAN Plus FORTRAN IV by Michael
Kennedy and Martin B. Solomon (Prentice-Hall, 1975,
Second Edition) :

4. FORTRAN by Kenneth P. Seidel (Goodyear, 1972)

5. FORTRAN IV, A Self-Teaching Guide by Jehosua
Friedmann, Philip Greenberg, and Alan Hoffbert (Wiley,
1975)

6. FORTRAN, A Structured, Disciplined Style by Gordon B.
Davis and Thomas R. Hoffman (McGraw-Hill, 1978)

NOTATIONS

In this manual, we use the following notations:

ALL CAPS
commands, statements, or functions. Type these exactly as

shown.

underline

values that you must supply. .

Radie fhaek

TRS-80 °

CONTENTS

Part 1 -- Operating FORTRAN

Chapter 1 Introduction
Chapter 2 The Editor (ALEDIT)

Chapter 3 The Compiler (F8¢)
Chapter 4 The Linker (L8¢)

Part 2 -- The FORTRAN Language

Chapter 5 FORTRAN Program Structure . .
Chapter 6 Data . . « v ¢ ¢« ¢ & v ¢ o o« &
Chapter 7 Expressions
Chapter 8 Input/Output
Chapter 9 Segmenting Programs

Chapter 1§ FORTRAN Statements
Chapter 11 FORTRAN Functions

Part 3 -- Error Messages
A/ TRSDOS EXrOrsS « o « o o o o o o« « o &
B/ Compiler Error Messages

C/ Editor Error Messages . . . « . « o &
D/ Linker Error MessSagesS . . . « « « o« &

Part 4 -- Quick Reference
A/ EAitOr v v v v v v o 4 o o o o
B/ Compiler . . ¢ ¢ ¢ v v v o o o &
C/ Linke€r . v v v v ¢ o ¢ o o o o
D/ FORTRAN Statements and Functions

* * . L] .
. * L . .
* L] L4 . .

Appendices
A/ Language Extensions and Restrictions .
B/ I/0O Interface . . « « « ¢« « « o« « o

C/ Subprogram Linkages . . « « « o« « v .

D/ ASCII Codes
E/ FORLIB Arithmetic Library Subroutines

F/ Output File Format « v « « .« &
G/ Storage Format . . . ¢« v ¢ v o « « . .
H/ Format of Link-Compatible Object Files
I/ MACRO-8f Assembler . . « . « o« « o« o &

.

Index L L] . . . L) - * e [. . . L] - . . .

. L] L] . .

L] * L L]

. L] . ° .

. L] L] L]

L] L] L] L[] °

L] . . L]

. . . L °

. L] L] L]

. . . L]

11
23
39
49

57
61
75
87
95
121
135
187

213
215
217

222
224

227
229
234
236
237

245°
247

249
254
257
258
261
262
264
267

311

Radio fhaek

Section |

Operating
FORTRAN

TRS-80 °

Part 1

OPERATING FORTRAN

Radio fhaek

MODEL 4 FORTRAN INTRODUCTION
TRS-80 °

CHAPTER 1 / INTRODUCTION

To see how to use your FORTRAN package, go ahead and run a
program.

To do this, follow these steps:

(1) Type a FORTRAN program ,

(2) Check the program for errors (by compiling it)
(3) Save the compiled program

(4) Save the program as a TRSDOS command file

(5) Execute the program

Step 1. Typing a FORTRAN Program

Insert your FORTRAN diskette and press the reset button of
your computer. Type in the date and time. Then your screen
displays:

TRSDOS Ready
Type:
ALEDIT <ENTER>

This loads the Editor. The Editor lets you write and edit your
FORTRAN programs.

At the "Ready" prompt, type I (the ALEDIT command for Insert):
I

This command clears the screen and displays the name of the file
to be edited at the upper right corner of the screen.

Radio fhaek
11

MODEL 4 FORTRAN INTRODUCTION
TRS-80 °

Since no file was loaded with ALEDIT, the Editor assigns
NONAME/SRC as the filename of the current insertion.

Use <right arrow> to space over to Column 9, and then type:
A = 12.5 <ENTER>

You may type FORTRAN statements anywhere between Column 7 and
Column 72. Columns 1-5 are reserved for statement labels, and
Column 6 is reserved for continuation markers.

Type the remaining lines of the program. Be sure to begin each
line at Column 9. (Type the statement label in the format line
in any of the first five columns.)

WRITE(5,5) A <ENTER>

5 FORMAT(' A = ',F4.1) <ENTER>
END <ENTER>
<BREAK>

When you type <BREAK>, your screen displays "Brk”. This means

the Editor is out of Insert Mode and ready to accept additional
commands. (Remember, the first one it accepted was the Insert

command.) '

If you made a mistake while typing a line, press:
Q <ENTER>

This is the Quit command. It exits the Editor and returns you
to TRSDOS Ready. Now repeat Step 1. 1In Chapter 2, we discuss
how to edit each line, but for now you must retype the program.

When you are sure that the program is correctly typed, press
<BREAK> to exit Insert Mode. Type:

W SAMPLE/FOR

This command writes your FORTRAN "source program" to the disk
with a filename of SAMPLE/FOR. If you don't save an edited
file with a W command, you lose your corrections when exiting

Radio fhaek
12

MODEL 4 FORTRAN INTRODUCTION
TRS-80 °©

the Editor. The SAMPLE/FOR filename now appears at the upper
right corner of your screen. If you save a program without a
filename after the W, the Editor saves the file with the
current filename. No warning is given when a file with the
same name is overwritten with the W command.

If you don't assign an extension to a filename, the Editor
automatically attaches the SRC extension. :

You are now finished with the Editor. Exit it and return to
TRSDOS Ready by typing:

Q <ENTER>

Step 2. Check the Program For Errors

Each time you run a program, check for syntax errors, which
are usually simple spelling and word order mistakes in your
statement lines. You can perform the check by compiling the
program. Type:

F8f <ENTER>

F8f is the filename of the Compiler. The computer loads
the Compiler and then displays the asterisk (*) prompt. To
perform the syntax check, type: V

=SAMPLE/FOR <ENTER>

This tells the Compiler which file to compile. Your FORTRAN
Compiler then checks the syntax of your program. (You may
omit /FOR. The Compiler uses /FOR as a default extension on

your source files.)

During processing, your screen displays $MAIN, along with
any syntax errors. Some sample errors are:

?Line: Q@300 Statement Is Out Of Sequence:Format'

?1 Fatal Error(s) Detected

Radio fhaek

13

MODEL 4 FORTRAN INTRODUCTION
TRS-80 °

If you have errors, return to TRSDOS by pressing <BREAK>.
Then type:

REMOVE SAMPLE/FOR <ENTER>

and repeat Steps 1 and 2 again. (The Error Messages are

listed in Part 3.) When the program compiles
successfully, you can save it on diskette as a relocatable

object file.

Step 3. Create a Relocatable Object File

Before executing your FORTRAN source program, you must save
it on your diskette as a "relocatable" object file. A

" relocatable object file is your source program, compiled
into object code. The file is "relocatable" since it can be
located in different parts of the memory.

You create this file with the Compiler. You should be in
the Compiler at this point, with your screen displaying the
asterisk prompt. If you are in the TRSDOS Ready mode
instead, type:

F8J <ENTER>

to reenter the Compiler. To get ready to execute your
program, type:

BOAT=SAMPLE <ENTER>

If you would also like technical information about the
relocatable addresses of BOAT, type this instead:

BOAT ,CAR=SAMPLE <ENTER>

The computer compiles your source file, SAMPLE/FOR. (Since
you did not specify an extension for this source file, the
Compiler assumes the extension is /FOR.)

Radie fhaek
14

MODEL 4 FORTRAN INTRODUCTION
TRS-80 °

It saves the compiled file on diskette as a relocatable
object file named BOAT. If you chose the second option, the
computer also creates a "listing" file, named CAR, on your

diskette.

You can see all these files on your diskette's directory.
Press <BREAK> to return to TRSDOS Ready. Now type:

DIR <ENTER>

Notice that the computer added the extension /REL to BOAT,
the "relocatable" file, and /LST to CAR, the "listing" file.
If you did not create "CAR," now go to Step 4,

CAR/LST contains useful technical information about
BOAT/REL. You can list it by typing (in response to the
TRSDOS Ready prompt):

LIST CAR/LST <ENTER>

Your screen displays:

FORTRAN-8f VER. X.XX Copyright 1978-1981 (C) By Microsoft
BYTES: 18287
CREATED: XX-XXX-XX

1 A=12.5
*kk ok ok gpag: LD BC,S$SL
*kk kK ggp3’ JP $INIT
2 WRITE(5,5) A
ok kK goge" LD HL,[#9 99 48 84]
*kok ok ok gogor CALL $L1
*kkkk gggc LD HL,A
ded ok ke gggr! CALL $T1
okk ok ok gg12' LD DE,5L
*dk ok k gg1s LD HL,[#5 gg g9 g91]
* ke k K go1s: CALL SW2
3 5 FORMAT(' A = ',F4.1)
hkkkk goiB!’ LD DE,A
®
Radio fhaek

15

MODEL 4 FORTRAN

INTRODUCTION

kkhkkkk
kkkkk
*kkkk
hkk k%
4

kkkkk
kkkkk
%k k kK
kkkk*k

go1E"
gp21"
gg23"'
go26"

9929
ggac'
2939
gg34’

TRS-80 °

LD HLIGL gg #F 99
LD A,82

CALL $Il

CALL $ND

END

CALL $EX

gL gg og gp

o9 gd 48 84

g5 g9 09 gg

Program Unit Length=@g@38 (56) Bytes
Data Area Length=@g@13 (19) Bytes

Subroutines Referenced:

$I11
$T1

$EX

Variables:

A

Labels:

$SL
1

S$INIT

$W2

gogL"

goge’

$L1

$ND

5L gggs"

Note: Some of these memory location numbers may vary

slightly.

You can halt the listing by pressing <SHIFT> <@>.
key to continue. :

You see the following items in the listing file:

(A)
(B)

the number of bytes remaining in memory.

Press any

the actual FORTRAN statements from your source

file.

- Radio Shaek

16

MODEL 4 FORTRAN INTRODUCTION
TRS-80 ¢

(C) the relocatable object-code instructions from the
relocatable object file. The Compiler has
disassembled these instructions into Zz-8f assembly
language code to help you read the code. Notice
that each instruction is located in a relocatable
address. For example, the instruction:

JP $INIT

resides at the address of @@@3' (hexadecimal).
When loaded, this instruction is located at #gg3
plus the originating address of the program. Also
notice that most of these instructions are calls
or jumps to subroutines. For example:

JP SINIT
jumps to the subroutine $INIT.
CALL SL1

jumps to the subroutine $L1.

These subroutines are all on your diskette in a
file named FORLIB/REL. When you execute the
program, use the Linker to load FORLIB into ‘memory
and look up the address of each instruction.

(D) the physical length of the program (in bytes). 38
is the length in hexidecimal notation; 56 is the
length in decimal.

(E) the physical length of the data in the program.

12 is the hexidecimal length; 18 is the decimal
length.

(F) all the subroutines required to execute the
program.

(G) the relocatable addresses where the value of your
variables reside. 1In this case, there is only one
variable, A, which contains the value of 12.5. It
resides at the relocatable area of @@@l". When
loaded, 12.5 resides at @@@l plus the originating
address of the data in your program.

(H) the relocatable addresses that the labels in your

Radio fhaek

17

MODEL 4 FORTRAN INTRODUCTION
TRS-80 °

program reference, or "point to."™ When loaded,
$$L points to @P@P6 plus the originating address of
the program; 5L points to @@@5 plus the
originating address of the data. Notice that the
single quote (') signifies a relocatable program
address. Double quotes (") signify a relocatable
data address.

To print out a listing of this file, type:
LIST CAR/LST (P) <ENTER>

Now you are ready to execute the program.

Step 4. Saving Your Program as a Command File

Before executing your program you must save your object file as a
TRSDOS command file.

To do this, you need to have BOAT in the Linker. If you are
in TRSDOS Ready, type:

L.8J <ENTER>
Then type: |
BOAT <ENTER>
Your screen displays:
DATA 30@¢ 304B < 75>

FORLIB RQUEST V
-$EX 393D -$11 3937 ~$INIT 3917

-SL1 301D -$ND 3g3Aa ~-T1l 3923
-$W2 3g2c

7 UNDEFINED GLOBAL(S)
43427 BYTES FREE

Note: These numbers may vary slightly.

Radie fhaek

18

MODEL 4 FORTRAN ® INTRODUCTION
- TRS-80

The seven "undefined globals" are the seven subroutine
requests needed to link and run the simple program of
A=12.5. The characters on the left are the names of the
subroutines (-$Il1, -ND, and so on). The subroutines are
located in the FORLIB subroutine library. The numerals on
the right are the memory addresses of your program that
contain the requests for these subroutines (3¢37, 3¢3A, and
so on).

The globals are undefined because the Linker has not yet
input FORLIB into memory and looked up where they reside in
memory.

You can then save the object file by writing the name of the
file (you have to assign a new name), followed by a -N and a
-E.

Assign the name "FAN" for your command file. Type:
FAN-N-E <ENTER>

Now the program is stored in a file called FAN/CMD. (The
computer gave it the extension /CMD to signify that it is a
TRSDOS command file.)

FAN/CMD is an independent object file that you can run
directly from TRSDOS Ready. When you want to execute it,

type:
FAN <ENTER>

Step 5. Execute the Program

To execute the program, type the name of the file. Type:
FAN <ENTER>

This command tells TRSDOS to load and run the program FAN.

Radie fhaek
19

MODEL 4 FORTRAN o INTRODUCTION
TRS-80

While the program is executing, you may get a "Compiler
runtime error message." This message appears on your screen
as two letters enclosed with asterisks. If you get this
message, look up the meaning in Part 3, REMOVE

SAMPLE/FOR, and go back to Step 1.

The sample program runs quickly because it is simple. The
longer and more complicated your FORTRAN programs are, the
longer they take to run and link. This is because a more
complicated program requires more subroutine library
requests.

Review

When you wrote, compiled, linked, and executed the preceding
program (SAMPLE/FOR), you followed this procedure:

(1) First you wrote the FORTRAN program using the
Editor (ALEDIT). You saved this on diskette as
~a source file.

(2) Then you checked the program for correct syntax
using the Compiler (F8¢).

(3) Next you created the relocatable object file
(BOAT/REL) that contains the object code. You
might have also created a listing file (CAR/LST).
Creating a listing file is optional.

(4) Then you created a command file (FAN/CMD) so
that you can run the program directly from
TRSDOS.

(5) Finally you executed the program.

Radie fhaek

20

MODEL 4 FORTRAN INTRODUCTION
TRS-80°

Here are some shortcuts you can take once you understand the
procedure:

(1) Write the program in the same way you did above.

(2) Check the program for the correct syntax by typing
(in TRSDOS Ready):

F8J =SAMPLE <ENTER>

(3) Create the relocatable object file by typing (in
TRSDOS Ready) :

F8¢ BOAT=SAMPLE <ENTER>

(4) Load the object file and create a command file at
the same time by typing (in TRSDOS Ready):

L8¢ FAN-N, BOAT-E <ENTER>

(5) Execute the program by typing the name of the command
file (in TRSDOS Ready):

FAN <ENTER>

If you think your program is error-free, you can omit Step

2. Step 3 reports syntax errors as it creates the
relocatable object file.

Radie fhaek

21

MODEL 4 FORTRAN THE EDITOR
TRS-80 ©

CHAPTER 2/ THE EDITOR (ALEDIT)

ALEDIT lets you enter and edit FORTRAN source programs. You
can save these programs on disk as source files to be
compiled into object code.

This selection describes how to use ALEDIT. For information
on how to write a FORTRAN language source program, see
Part 2, "The FORTRAN Language."

Note: Since the FORTRAN Compiler's ALEDIT Editor
also serves as the Editor for the ALDS Assembly
Language Development System (Radio Shack Cat. No.
26-2012), some Insert Mode control codes generate
special assembly language characters. These
characters have no function in this FORTRAN Compiler
program, and therefore are not listed in this manual.

LOADING THE EDITOR

To load ALEDIT and the specified source filespec, at the
TRSDOS Ready prompt type:

ALEDIT source filespec

The source filespec is optional. For example:

ALEDIT <ENTER>

also loads the Editor. Your screen displays the following
heading, which is similar to that displayed when you specify
source filespec: :

TRS-80 Model 4 Text Editor Version V.r.p.
Copyright (c) 1982, 83 Tandy Corp.

Radio fhaek
23

MODEL 4 FORTRAN THE EDITOR
TRS-80°

(v.r.p. is the version, release, and patch numbers.)

If you load ALEDIT without a filespec, the screen displays
a "Ready" prompt below the copyright message. To enter
Command Mode and begin writing your FORTRAN program, type:

I
(Do not type <ENTER>.) However, typing
ALEDIT SAMPLE/FOR <ENTER>

loads the Editor, displays the above heading, and then loads
a source file named SAMPLE/FOR.

If the source filespec does not contain an extension, the
Editor appends /SRC to it.

ALEDIT loads into all the memory above TRSDOS. It reserves
approximately the top 4K bytes in the Model 4 as an "edit
buffer" for inserting your programs. However, if you also load
one of the High Memory TRSDOS utilities, the edit

buffer is smaller.

USING THE EDITOR

You can use ALEDIT in the Insert mode, Command Mode, and the Line
Edit Mode.

THE INSERT MODE

Pressing I places the Editor in the Insert mode and allows you to
enter programs and text. If you make an error while typing in a
program line, but haven't pressed <ENTER> yet, you may use the
right and left arrow keys to move the cursor and immediately
correct the mistake. If, however, you have already pressed
<ENTER>, you may only make changes by returning to the Command

Radio fhaek
24

MODEL 4 FORTRAN THE EDITOR
TRS-80 °

Mode. Pressing <BREAK> exits the Insert mode and returns you to
the ALEDIT Mode.

THE COMMAND MODE

When you first load the Editor, it is in Command Mode. While in
this mode, you can use any special keys listed in Table 1 or the
commands listed in Table 2.

All commands except I (Insert Mode) and E (Line Edit Mode) return
to Command Mode after executing. To return to Command Mode from
I, press <BREAK>; to return to Command Mode from E, press
<ENTER>.

An ALEDIT command creates a blank "work line" and points to the

line just beneath it. To redisplay the screen after an error
message and delete the work line, use the N command.

Sample Use
Use the I command to insert this program:

THIS IS THE FIRST LINE <ENTER>

THIS IS THE SECOND <ENTER>
AND HERE IS ANOTHER <ENTER>
AND ANOTHER <ENTER>

<right arrow> END <ENTER>

Press <BREAK> to return to Command Mode.

You can move the cursor and rearrange the lines of the
program. For example, type:

T

The cursor moves to the top of the text. Type to move
it to the bottom. Press <up arrow> and <down arrow> to move
it to specific lines.

Radio fhaek
25

MODEL 4 FORTRAN THE EDITOR

TRS-80°

Move the cursor to Line 3 and type:
1

The less than symbol (<) appears to the left of the line.
This specifies the beginning of a block. Move the cursor to
line 4 and type:

2

The greater than symbol (>) appears to the left of the line.
This specifies the last line in the block. Move the cursor
up to Line 2 and type:

o

This command copies the block between Lines 1 and 2. Move
the cursor to the next to last line and type:

D

This is the delete command, which executes without pressing
<ENTER>. It deletes the last line.

To save this program on disk, type:
W TEST <ENTER>

It does not matter at which line the cursor is positioned.
This saves this program on disk as a file named TEST/SRC.

(Note: The W filespec command overwrites files with the
same name without a FILE ALREADY EXISTS error message.)

Now, to exit the Editor, type:
Q <ENTER>
Q exits the Editor without writing the text to disk. If you

forgot to save the text first, type ALEDIT * <ENTER> to
reenter the Editor. This retains your text.

Radie fhaek
26

MODEL 4 FORTRAN

TRS-80 - THE EDITOR

Be sure you use the ALEDIT * command immediately after you

exit the Editor.
a command that modifies memory.

Also, be sure you type a

space between ALEDIT and the asterisk(*).

Keys
<left arrow>
<down arrow)>
<up arrow>

<CTRL><A>

<CTRL>

#1ine<ENTER>

<BREAK>

<SHIFT>
<up arrow>

Table 1 / ALEDIT Command Mode Keys

Description
Moves the cursor one position to the left.

Moves the cursor down one line
(ignored if the cursor is not in
Column 1).

Moves the cursor up one line (ignored
if the cursor is not in Column 1).

Moves the cursor to the top of the
screen.

Moves the cursor to the bottom of the
screen or to the first line after the last
line of text.

Displays the current line sequence number.
This number changes as you insert and
delete lines.

Moves the cursor to the specified
line sequence number and moves that line
to the top of the screen. ‘

Cancels any command being executed and
returns to Command Mode.

Cancels the current command line if you
have not yet pressed <ENTER>.

It does not work predictably after you run

Radio Shaek
27

MODEL 4 FORTRAN THE EDITOR

TRS-80

Table 2/ ALEDIT Editor Commands

current line
line where the cursor is currently positioned.

del (delimiter)
one of the following characters, which marks the
beginning and ending of a string:

" S ss " ()t , -0/ K< =>07

string
one to 37 ASCII characters.

text
source program or text currently in RAM.

A <ENTER> :
reexecutes the last executed command. This command only
works with the Editor commands C, F, X, L, and W.

B .
moves the cursor to the bottom of the text.

C del stringl del string2 del occurrence

<ENTER>
changes stringl to string2 for the number of
occurrences you specify. Occurrences must be in the
range 1 to 255. The changes begin at the current line
and are made only to the first occurrence on a given
line.

If you omit occurrence, only the first occurrence of
stringl is changed. You may specify occurrence with
an asterisk, in which case the first occurrence of
stringl changes in all the remaining lines.

Radio Shaek
28

MODEL 4 FORTRAN THE EDITOR

TRS-80°

For example:
C/TEST/FILE/3 <ENTER>

changes the first 3 occurrences of TEXT to FILE.
C?TEXT?FILE?* <ENTER>

changes all occurrences of TEXT to FILE. (Change acts
on only the first occurrence within a line.)

After executing the command, the cursor positions
itself at the last change or at the top of the file if
changes went through the whole file.

D

deletes the current line or block of lines. To delete
a block, position the cursor at the first line in the
block and type <1>. Then position it at the last line
and type the D command. (The block may be on

several pages.) You must position the cursor on a
line within the file.

For example:

A= 12.5

<1> WRITE (5,5) A

<D> 5 FORMAT (' A = ',F4.1)
END

deletes all but the following:

A= 12.5
END

You an cancel a block deletion after pressing <1> but
before typing D. To do this, press <3>.

E

lets you edit the current line using Line Edit Mode
subcommands. The line appears in reverse video. See
"The Line Edit Mode" for a listing of subcommands.

Radio fhaek

29

MODEL 4 FORTRAN THE EDITOR

TRS-80 °

F del string del occurrence <ENTER>

finds the specified occurrence of string. If you
omit occurrence, it finds the first occurrence of
string. If you omit string, it finds the last

string specified. Occurrences must be in the range 1
to 255. For example:

F/TEXT/2 <ENTER>

finds the second occurrence of TEXT.
F/TEXT/ <ENTER>

finds the next occurrence of TEXT.

F <ENTER>
finds the next occurrence of the last specified string.
F$ % <ENTER>

finds the next occurrence of five blank spaces.
The Editor searches for only one occurrence of the
string in each line.

G <ENTER>
deletes all text from the current line to the end.
The Editor first prompts you with:

"Are you sure?"
Type Y <ENTER> to delete; N <ENTER> to cancel.

H <ENTER>

prints the entire text if entered as the first command
or the specified block on the printer. To print a
block, move the cursor to the first line of the block
and type <1>. Move the cursor to the last llne of the
block and type <H>. For example:

Radio fhaek
3¢

MODEL 4 FORTRAN THE EDITOR

TRS-80 °
<1> A= 12.5
WRITE (5,5) A
<H> 5 FORMAT (' A = ",F4.1)

END

prints a block of text that includes the first three
lines.

You can cancel a block printing after pressing <1>
but before typing H. To do this, press <3>.

Press <BREAK> to terminate printing. If the printer is
offline or goes offline during printing, you may lose
some characters.

I
enters Insert Mode for inserting lines just before the

current line.

J

displays current size of text and how much memory
remains. Memory size does not include a small work
area when the buffer is full, but the text size may
reflect some of this work area.

K <ENTER>

deletes ALL text. (Does not delete text from the

disk file, only from the edit buffer). Before deleting
your text, the Editor asks you "Are you sure?"

Type Y <ENTER> to execute the command; N <ENTER> not to
execute it.

L filespec $C <ENTER>

loads filespec into the Editor. $C is optional.

If specified, the Editor chains the new filespec to

the end of the text currently in memory. If not specified, th
new filespec overlays the current text.)

For example:

L TEST <ENTER>
loads TEST/SRC into the Editor.

Radio fhaek

31

MODEL 4 FORTRAN . THE EDITOR

TRS-80 °

L TEST $C <ENTER>
chains TEST/SRC to the end of the text currently in
memory.

The Editor loads fixed length record (FLR) files with a
record length of one. If the file is fixed length, you
must end each line with a carriage return.

Note: When the Editor completes, the record length is
256.

M

moves the specified block just ahead of the current
line. Use <1> and <2> to specify the block.

For example:

<1> CALL READER (RESULT,N)
<2> CALL DSKRIT (RESULT,N)

AVERAG = AVE(RESULT,N)

STDDEV = STD(RESULT,AVERAG,STDDEV)
<M> CALL WRITER (RESULT,N,AVERAG,STDDEV)

moves the block of CALL instructions just ahead of
the last line:

AVERAG AVE(RESULT,N)

STDDEV STD(RESULT,AVERAG,STDDEV)
CALL READER (RESULT,N)

CALL DSKRIT (RESULT,N)

CALL WRITER (RESULT,N,AVERAG,STDDEV)

You can cancel the block after specifying it but
before typing M. To do this, press <3>.

N

updates the display. You might want to use this
after executing the J command or canceling the G
command. ,

Radie fhaek
32

MODEL 4 FORTRAN THE EDITOR

TRS-80 °

0]

copies the specified block just above the current
line. (Use <1> and <2> to specify a block as
described in the M command.)

P
moves the cursor to the next page (which is 24 lines
from the top of the screen).

Q <ENTER>

exits the Editor. If you forgot to save the file
first, type ALEDIT * <ENTER> immediately upon exiting
the Editor. The Editor loads with your text

retained in memory.

R <ENTER>

deletes the current line and enters Insert Mode.

After using the J command, if there is @@@F memory left in
the buffer, executing the R command deletes the

line but does not let it be replaced with next text.

T
moves the cursor to the top of the text.

U
moves the cursor to the previous page (which is the 24
preceding lines).

\"
scrolls current line to the top of the screen.

W filespec $optionl... <ENTER>

saves all text on disk as filespec. filespec is
optional; if omitted, it is the filespec you used

to load the file. The Editor appends /SRC to filespec
unless it already includes an extension.

Radie fhaek
33

MODEL 4 FORTRAN THE EDITOR

TRS-80 °

The options are:

E

L, ML, OR ILM

For example:

Exits the Editor after saving the file unless
there is an error.

Saves the file with line numbers in this
format: ASCII line number/dummy TAB/text.
Note: Do not save your source files with
these options. The FORTRAN Compiler
automatically assigns line numbers to source
programs. The numbers, however, are visible
only when you LIST the program.

Saves the file as a fixed length record (FLR)
file with a LRL of 256 in this format:

text/carriage return

This option is the default. You can use
ALEDIT to edit a "DO-file" created with the
TRSDOS "BUILD" command and save this format,
which the TRSDOS "DO" command can load.

W SAMPLE <ENTER>

saves all text as a file named SAMPLE/SRC.

W SAMPLE $E

saves text as SAMPLE/SRC. The Editor exits to TRSDOS
Ready after saving the file.

Without using the L or the M options, the Editor saves the
file in the format required by the FORTRAN Compiler

5 Each character is saved exactly as it appears
on the display.

Radio fhaek

34

MODEL 4 FORTRAN THE EDITOR

TRS-80 °
. No carriage returns or end of text code is saved.
. Each line is saved in this format:

length/text/

X del stringl del string2 del occurrence

Same as the C command, but prompts before making the
change. Occurrence must be in the range 1 to 255.

The LINE EDIT MODE

The E command enters Line Edit Mode for editing characters
within the current line.

Position the cursor on the line you wish to edit while you
are still in the Command Mode. Enter Line Edit Mode by
pressing E. When you enter this mode, the Editor displays
the line in reverse video. You can then use any edit
subcommands listed in Table 5 or the special edit keys
listed in Table 6.

For example, assume the cursor is on the following line:
THIS IS THE FIRST LINE

To change the word FIRST to THIRD from the command mode,
type:

E

(Do not press <ENTER>.) The Editor displays the line in
reverse video. You are now in Line Edit Mode.

Use the <SPACEBAR> to position the cursor at the F in FIRST
and type:

5CTHIRD <ENTER>

This stores the change and returns to Command Mode.

Radie fhaek

35

MODEL 4 FORTRAN THE EDITOR

TRS-80°

Table 3/ ALEDIT Line Edit Mode Subcommands

COMMAND DESCRIPTION

A Clears all changes and reenters
Line Edit Mode for the current line.

nCstring Changes the next n characters to
the specified string. If you omit
n, only one character is
changed. (Press <SHIFT> <up arrow> to
exit the change early.)

nD Deletes n characters. If you omit
n, one character is deleted.

E Exits the Line Edit Mode and stores
changes.
Hstring Deletes the remaining characters,

enters Insert mode, and lets you
insert a string.

Istring Lets you insert material
beginning at the current cursor
position on the line. Pressing
<left arrow> deletes characters
from the line. The line may be a
maximum of 78 characters.

nKcharacter Kills all characters preceding the
nth occurrence of the character.*
If you omit n, the first
occurrence is used. If no match is
found, the rest of the line is killed.

L Moves the cursor to beginning of line.

Radie fhaek
36

MODEL 4 FORTRAN THE EDITOR

TRS-80 °
Q Quits the edit mode, canceling all
changes.
nScharacter Positions the cursor at the nth

occurrence of character.* If no
match is found, positions the cursor
at the end of the line.

Xstring Moves the cursor to the end of the
line, enters Insert Mode, and
lets you insert a string.

* The compare begins on the character following the current
cursor position.

Table 4/ ALEDIT Line Edit Mode Special Keys

<SPACEBAR> Moves cursor one position to the
right.

<SHIFT> <up arrow> Returns to Command mode from the
I,X, C, or H subcommands.

<right arrow> Moves the cursor to next tab position
(or the end of the line) while
in the I, X, or H subcommand mode.
<left arrow> Moves cursor one position to the left.

<ENTER> Identical to the E subcommand.

Radie fhaek
37

MODEL 4 FORTRAN THE COMPILER

TRS-80 °

CHAPTER 3 / THE COMPILER

Your source file contains the FORTRAN statements you use to
write your program. However, your computer cannot directly
process the FORTRAN statements in the source file. The
statements must be compiled.

Compilation is the process of creating object code from a
source language. The computer understands this code
directly.

The relocatable object code your Compiler creates consists
of many calls to subroutines, which are contained in the
FORLIB subroutine library.

To execute the compiled program, you save the relocatable
object file and then use the Linker (discussed in Chapter 4)
to link it to the subroutines and create an executable
program.

Running the Compiler

To run the Compiler, type:
F8f <ENTER>

F8J (or more accurately, F8f/CMD) is the name of the
Compiler file on your diskette. When the Compiler is ready
to accept your commands, it prompts you with an asterisk.
To exit the Compiler and return to TRSDOS (when you are at
the command level), press <BREAK>.

Radio fhaek
39

MODEL 4 FORTRAN THE COMPILER
TRS-80°

COMMANDS

Your commands tell the Compiler the name of the source file
you want to compile and what options you want to use. Here
is the format for a Compiler command:

object filename,listing filename=source filename-switches

object filename -- This is the name you give your object
file. It is optional. To create a relocatable object
file, you must include this part of the command. The
default extension for the object filename is /REL.

rlisting filename -- This is the name you give the
listing file. It is optional. The default extension
for the listing file is /LST.
To send the listing to the printer, use LPT as the
filename. To send the listing to the screen, use TTY.

=gsource filename -- This is the name of a FORTRAN
program you have saved on diskette. The default
extension for a FORTRAN source filename is /FOR.
The source filename is always preceded by an equal
sign in a Compiler command.

switches -- These .affect the way the program is
compiled. If you do not specify a switch, -H is
used (default). '

1

Note: All filenames must be in this standard filename
format. (For further information, see Chapter 1.)

filename/extension.password:drive #

Radio fhaek

49

MODEL 4 FORTRAN THE COMPILER

TRS-80°

Examples
=SAMPLE/FOR

compiles the source file SAMPLE/FOR without creating an
object file or listing file. This is the syntax test you
can use on each source program file.

+ SAMPLE. PASS=SAMPLE. PASS

compiles the source file SAMPLE/FOR.PASS and creates a
listing file called SAMPLE/LST.PASS. (No object file is
created.)

BOAT, CAR=SAMPLE

compiles the source file SAMPLE/FOR. Creates a relocatable
object file called BOAT/REL and a listing file called
CAR/LST. (This is exactly the same as the example in the

Introduction.)
BOAT,CAR=SAMPLE-~-P-0

compiles the same files as above using the -P and -0
switches.

TEST,TEST=TEST~N
compiles TEST/FOR and creates TEST/REL and TEST/LST using
the -N switch.
SWITCHES
In programming, a switch is similar in concept to a

household electrical switch (a device for turning something
on or off).

Radie fhaek

41

MODEL 4 FORTRAN THE COMPILER

TRS-80 °

When you give your computer instructions, it selects one of
two paths -- on or off. You determine the path by setting
the switch. You use the Compiler switches during
compilation; each switch has a different effect on the
program output.

In the FORTRAN Compiler, switches are always preceded by a
hyphen (-). You may use more than one switch in the same
command. The switches are: ‘

-0 listing file addresses in octal

-H listing file addresses in hexadecimal
-N object code deleted from listing file
-P allots extra stack space

-M object code in ROM format

The -0, -H, and -N switches tell your Compiler what format
to use in creating the listing file (the meaning of the
listing file is explained in Chapter 1).

-H

Prints listing addresses in hexadecimal (the default
condition). Even though this is a default, you must use
this switch to get out of octal and back into hexadecimal.
The listing file (CAR/LST) you compiled in the Introduction
was hexadecimal.

-0

Prints listing addresses in octal.

Examples

BOAT,CAR=SAMPLE-O

(Type the letter O, not zero.)

Radio Sfhaek
42

MODEL 4 FORTRAN THE COMPILER

TRS-80 °

compiles SAMPLE/FOR into the relocatable object file,

CAR/LST. All memory addresses in CAR/LST are in octal
notation. If you use this example to compile the SAMPLE/FOR

file, which you created in Chapter 1, CAR/LST appears as
follows:

1 A=12.5

okl gog0099" LD DC,$$L

Fekkokk gogeg3"” Jp SINIT

2 WRITE(5,5) A

A AR gggpgge’ LD HL, (490 298 119 2041
edok ok Kk goggLL? CALL SL1

* ok k% gggg1 4 LD HL,A

kkkkk ggg917" CALL $T1

kkkkk ggpgpg22" LD DE,5L

LI gagg2s" LD HL, (905 @99 999 gpgg]
*kkok ok 208939 CALL SW2

3 5 FORMAT(' A = ',F4.1)
*dkk ok k go8@33" LD DE,A

LA LR] gogg3e6!’ LD HL, (901 99F 909 @91
*hkk % ggggaL:’ LD A,p92

kkk ok ok ggpgFas: CALL $I1

kedk ok ok pgggae’ CALL $ND

4 END

*kkkk gagags1: CALL $EX

Rk geeEsar pEL pog gEg peg
*RK KK gg0geg' pgg gOg 119 204
o kk ok pggggedr p@Es pog g9 geg:

Program Unit Length=gg@g@g@g7¢ (56) Bytes
Data Area Length-g@g@gg@g23 (19) Bytes

Subroutines Referenced:

$I1 SINIT SL1
$T1 S$W2 $ND
$EX |
Radio fhaek

43

MODEL 4 FORTRAN THE COMPILER

TRS-80 °
Variables:
A goggaL"
Labels:
$SL gagpge:’ 5L goaggas"
1l

The listing addresses are the six-digit numbers that
represent locations in memory for different calls (such as

gopgpg, go9GEP3', PPPPPFE6', and so on). Also, notice that

all the addresses are in octal (no number higher than
seven).

FISH,BIRD=ELEVEN-O

The program ELEVEN/FOR is compiled. A listing file called
BIRD/LST and an object file called FISH/REL are created.
The addresses in the BIRD/LST file are octal.

-N

The listing file lists only the FORTRAN source code and not
the object code that is generated.

Example
BOAT,CAR=SAMPLE-N

compiles the program SAMPLE/FOR. An object file called
BOAT/REL and a listing file called CAR/LST are created.
CAR/LST contains only your FORTRAN source statements, not
the corresponding (generated) object code.

If you use the example to compile the SAMPLE/FOR file from
Chapter 1, CAR/LST appears as follows:

®
Radio fhaek
44

MODEL 4 FORTRAN THE COMPILER

TRS-80 °

FORTRAN-8f VER. X.XX Copyright 1978-1981 (C) by Microsoft

BYTES: 27461
CREATED: XX-XX-XXXX

1 A=12.5

2 WRITE(5,5) A

3 5 FORMAT(' A = ',F4.1)
4 END

Program Unit Length=@g@l3 (56) BYTES
Data Area Length=@g@g1l3 (19) BYTES

Subroutines Referenced:

$I11 SINIT | SL1
$T1 SW2 $ND
$EX

Variables:

A gggL

Labels:

$SL gage:’ 5L gags"
1

In this listing file, only the source code (and not the
object code) is listed. This is a convenient switch to use
since you'll probably rarely want to look at the object
code.

The remaining Compiler switches affect the following other
aspects of compilation.

Radie Shaek

45

MODEL 4 FORTRAN THE COMPILER

TRS-80 °

-P

For long programs, each -P switch allocates an extra 10§
bytes of stack space for use during compilation. If you get
any "stack overflow" errors during compilation, use the -P
switch.

Example
*BILL=STEVE-P~P

compiles the program STEVE/FOR and creates an object file
called BILL/REL. Your Compiler is also allocated

200 extra bytes of stack space (1gf extra bytes for each -P
switch that you enter).

-M

Tells the Compiler that the object code must be in a form
that can be loaded into ROMs. When you specify a -M, the
generated code differs from normal in the following ways:

. FORMATs are in the program area, with a "JMP"
around them.

. Parameter blocks (for subprogram calls with
more than three parameters) are initialized at
runtime, rather than being initialized by the
loader.

Note: If you intend your FORTRAN program for ROM, be
aware of the following:

1. Do not use DATA statements to initialize RAM. The
loader does this initialization and therefore is not
present at execution. You may initialize variables and
arrays during execution via assignment statements or by
READing into them.

Radie fhaek
46

MODEL 4 FORTRAN THE COMPILER

TRS-80 °

2. FORMATs should not be read into during execution.

3. 1If you use the standard library I/0 routines, do not
OPEN DISK files on any LUNs other than 6, 7, 8, 9, 14.
(See Chapter 8, Input/Output, for an explanation of LUN.)
If you need other LUNs for Disk I/0, reassemble $LUNTB
with the appropriate addresses pointing to the Disk driver
routine.

A library routine, $INIT, sets the stack pointer at the top
of available memory (as indicated by the operating system)
before execution begins.

The calling convention is:

LD BC,<return address>
JP SINIT

Radio fhaek
47

MODEL 4 FORTRAN THE LINKER

TRS-80°

CHAPTER 4 / THE LINKER

The Linker creates a complete, executable program out of

your relocatable object file. After it does this, you can
save the program on diskette as a TRSDOS command file that you
can load and run at the TRSDOS Ready prompt.

In creating an executable TRSDOS command file out of your
program, the Linker automatically searches the system subroutine
"subprogram" library (FORLIB) and loads the library routines
needed to satisfy any undefined global references (that is,
special calls that have been generated by the object program to
the subroutines in the FORLIB library).

In the Introduction is a list of seven subroutines needed to
run SAMPLE/REL -- the relocatable object file you created
with your Compiler.

Subroutines Referenced:

$11 SINIT SL1
$T1 SW2 $ND
S$EX

These subroutine names are called global symbols. The
globals are "undefined," because your relocatable object
file' does not know where in memory to find them. When you
use the Linker to create the command file, it automatically
inputs the required globals and their memory addresses and
thereby links the globals to the program.

Running the Linker
To use the Linker, type:

L8J <ENTER)>

Radio fhaek

49

MODEL 4 FORTRAN o THE LINKER
TRS-80

This loads and executes your Linker. When it is ready to
accept your commands, it prompts you with an asterisk. To
exit the Linker, press <BREAK>.

LINKER COMMANDS

You can use several formats when linking a program:

command filename-N,object filenames-switch (es)
command filename-N -- Creates a TRSDOS command
file. This is optional. If you do not specify
an extension, the Linker uses CMD. When using
command filename-N, the -E switch is
required. '
object filename -- This is the relocatable object
file(s) that needs to be loaded. If omitted, the
previously loaded object file(s) is used. If you
do not specify an extension, the Linker uses REL.
switch -- Specifies what action the Linker takes
with the object file. If omitted, the -U switch
is used. :

Remember, all filenames must be in standard TRSDOS filename
format. (For further information, see Chapter 1l.)

Examples
ELEVEN <ENTER>

inputs ELEVEN/REL. Since you do not specify a switch, the
Compiler displays the file using the -U format. (This is
discussed later in this chapter.)

Radio fhaek
59

MODEL 4 FORTRAN THE LINKER

TRS-80 °

FILE-N,FILE-E

inputs FILE/REL into the Linker and creates a command file
(FILE/CMD) .

PROG, SUBPROG

inputs PROG and SUBPROG into the Linker.

Switches

You may use several switches when you enter a Linker
command to specify actions affecting the linking process.
You must precede Link switches with a hyphen (-).

The Link switches are:

-R reset

-P specifies program area

-D specifies data area

-N saves command file

~-U lists origin and end of program; undefined globals
-M lists origin and end; defined and undefined globals
-E exits LINKER and returns to TRSDOS

-S searches file for globals

-R
Reset. This switch puts the Linker back into its initial

state. Use -R if you load a file by mistake and want to
restart. You can also use this switch to delete the program

Radie fhaek

51

MODEL 4 FORTRAN THE LINKER

TRS-80 °

currently in the Linker and load another program. -R takes
effect as soon as you enter it in a Linker command. For
example, assume you input this file into the Linker:

INVEN1 <ENTER>

Now, if you want another file, type:
—-R <ENTER>

and then input your other file:

INVENZ2 <ENTER>

-E or E:name

Exits the Linker and returns to TRSDOS Ready. The system
library is searched on your disk to satisfy any existing
undefined global (subroutines in your library).

The optional form, E:name, returns you to the starting
address of name rather than TRSDOS Ready. name must be
a previously defined global symbol.

You almost always use this switch when using the N switch
(see N for an example).

Radio Sfhaek

52

MODEL 4 FORTRAN THE LINKER

TRS-80°

filename-N

Saves the program on diskette under the filename you
selected (with a default extension of /CMD). You
must also specify the -E (Exit) switch when you use
the -N switch.

For example:
FAN-N, SAMPLE-E <ENTER>

inputs SAMPLE/REL into memory, creates a command file called
FAN/CMD, and exits to TRSDOS Ready. Once you create it, you
can execute FAN/CMD at the TRSDOS Ready prompt.

Be sure to use the N switch at the beginning of the Linker
command. For example: :

SUBNAME, PROG-N, PROG-E
does not work properly, whereas
PROG-N, SUBNAME, PROG~E

works.

-P and -D

Let the origin(s) be set for the program being loaded. (The
origin is the absolute address of the beginning of the
program area on your diskette.) As soon as you enter the
switch(es), the computer reads -P and -D, but they have no
effect on the program that is currently loaded. If you do
not use the -P and -D switches, your program is loaded into
memory beginning at the address of 3¢@g¢ (default). The data
portion precedes the program portion. =P and -D let you
load the program into different memory addresses.

Radio fhaek
53

MODEL 4 FORTRAN THE LINKER
TRS-80°

SUBNAME, PROG-N, PROG-E
does not work properly, whereas
PROG~-N, SUBNAME, PROG-E

works.

-P and -D

Let the origin(s) be set for the program being loaded. (The
origin is the absolute address of the beginning of the
program area on your diskette.) As soon as you enter the
switch(es), the computer reads -P and -D, but they have no
effect on the program that is currently loaded. If you do
not use the -P and -D switches, your program is loaded into
memory beginning at the address of 3¢@@ (default). The data
portion precedes the program portion. =P and -D let you
load the program into different memory addresses.

Use this form:

-P: address or -D: address
where address is the desired origin in the current base
you are using. (The default base is hexadecimal. =0 sets
the base to octal, -H to hexadecimal.)

If you do not enter -D, your data areas are loaded before
your program areas. If -D is given, all data areas are
loaded, starting at the data (area) origin, and the program
area at the program origin.

Examples
ELEVEN-P: 4000
loads ELEVEN/REL, beginning at memory address 4@@@. Since

you do not specify -D switch, the program portion precedes
the data.

Radie fhaek

54

MODEL 4 FORTRAN THE LINKER

TRS-80 °

For example:
ELEVEN-U <ENTER>

displays the origin and end of the program and data areas as
well as all undefined globals of ELEVEN/REL.

-M

Lists the origin and end of the program and data area, all
defined globals and their values, and all undefined globals,
followed by an asterisk. If you enter a -D, your screen
displays program information. Otherwise, the program is
stored in the data area.

-S

Whenever the Linker saves a FORTRAN program (-N), it
automatically searches the FORTRAN library and links the
appropriate routines. The ~S switch forces a search of the
system library also. ‘

Radioe fhaek
55

Section |l

The
FORTRAN
Language

TRS-80 °

Part 2

THE FORTRAN LANGUAGE

Radie fhaek

TRS-80°

INTRODUCTION

FORTRAN is a problem-oriented programming language designed
for both experienced programmers and beginners. (FORTRAN is
an acronym formed from the words FORmula TRANslation. This
version is an extension to the ANSI Standard FORTRAN
(X3.9-1966).) It is simple enough for new programmers to
understand, but has many advanced features that make it a
powerful calculating tool.

Your FORTRAN package is arranged so that your Model 4 can
use each segment of the package efficiently, saving most of
the memory for your actual program.

Just as you do in other high-level computer languages, you
must follow precise syntactical procedures, such as the
naming of variables, the order of statements, and the
handling of input and output.

This manual explains these procedures and gives short
examples describing their use. It is not a tutorial of
FORTRAN programming, but a reference manual that shows you
how F8f treats the FORTRAN language. '

Chapter 5 describes the structure of FORTRAN programs,
Chapters 6, 7, 8, and 9 describe the language features, and
Chapters 1¢ and 11 provide an alphabetic list of FORTRAN
statements and functions, along with their syntax and use.

Radio fhaek

59

MODEL 4 FORTRAN FORTRAN PROGRAM STRUCTURE

TRS-80 ©

CHAPTER 5 / FORTRAN PROGRAM STRUCTURE

The FORTRAN Character Set

All FORTRAN programs consist of one main program and any
number of subprograms. The program units are made up of an
ordered set of lines, or "statements." You write statements
with the FORTRAN character set, which consists of:

letters:

AIBICIDIEIFIGIH'IIJIKILIMINIOIPIQIRISITIUIVI’WIXIYIle
numbers:
ﬂlllzl31415I617l8l9IAIBICIDIEIF

(the letters A-F are only for hexadecimal representation),
and the special characters:

blank
equal sign
minus sign
plus sign
asterisk (multiplication)
slash (division)
left parenthesis
right parenthesis
comma :
decimal polnt
) double asterisk (exponentiation)

F o ow AN+

FORTRAN statements are on 8f- character llnes that have the
following format: L

Column 1-5 statement labels
Column 6 continuation marker
Column 7-72 FORTRAN ‘statements

Column 73-8# identification field

Radio fhaek

61

MODEL 4 FORTRAN FORTRAN PROGRAM STRUCTURE

TRS-80 °

Statement labels are integers in the range 1 to 99999.
Blanks before or after the number are insignificant.

Labels must be unique in the program, that is, there cannot
be more than one label with the same value in the same
program or subprogram. Labels are only valid on the initial
line of a statement, not on continuation lines (see the
following).

The actual FORTRAN code can begin with Column 7 and may
extend to Column 72. If it is necessary to go beyond that,
you can continue the line on the next line by placing a
character in Column 6 and finishing the statement.

Often it is convenient to mark the continuation lines by
placing a number in Column 6, but any character will do.

You may have as many continuation lines as necessary to
complete the line. The computer ignores statement labels on
continuation lines.

The computer also ignores the identification field, Columns
73-80; thus, you can use it for any purpose you choose. For
example, you can number your program lines and put the line -
numbers at that point, or you can insert short comments in
this field. Generally, however, this field is left blank.

Figures 1 shows a sample FORTRAN program written on a "coding
sheet" -- a tabular form with columns, lines, and fields.
Following Figure 1 is a list that gives the meaning of each
statement of the program.

FORTRAN Statements

FORTRAN statements are made up of constants, for example,
6.2; variables, for example, AVE; and FORTRAN command words,
for example, READ. The two broad categories of FORTRAN
statements are executable and nonexecutable.

Radio fhaek
62

MODEL 4 FORTRAN FORTRAN PROGRAM STRUCTURE

TRS-80 °

EXECUTABLE STATEMENTS

Executable statements describe a certain action (or chain of
actions) that the computer is to perform. They can be
"replacement" statements, "control" statements, or I/0O
statements.

Replacement Statements

Replacement statements set a variable (variables are a
symbolic way of representing a number) equal to some value.

This value can be a number, another variable, or a list of
variables and operators. For example:

A = 34.5

sets A equal to 34.5.

Control Statements

The computer normally executes statements in a program in
the order in which they appear. Control statements change
that natural flow (or sequence of events) so that certain
statements are executed before other statements and other
statements are repeated. Control statements also mark the
end of the program. For example:

GO TO 3¢

transfers control of the program to the statement labeled
3. Control statements include:

CALL
DO

GO TO
IF
RETURN

Radie fhaek

63

MODEL 4 FORTRAN FORTRAN PROGRAM STRUCTURE
TRS-80

These statements are related to control statements:

ASSIGN
CONTINUE
END
INCLUDE*
PAUSE
STOP

* INCLUDE is actually a "pseudo op" (that is, it is not
executable).

Input/Output Statements

The computer uses Input/Output (I/0) statement to
communicate with you and with data stored in disk files.
One example is the WRITE statement:

WRITE(5,19) A

This statement instructs the computer to output the value of
the variable A to your screen. (5 is the device to which
the output is to be sent; it is the device number for the
screen. 1f is a FORMAT statement label that is discussed in
Chapter 8.) I/0O commands include: '

OPEN

- REWIND
ENDFILE
INP
ouT
READ
WRITE

NONEXECUTABLE STATEMENTS

Nonexecutable statements describe to the computer the nature
and storage of data and variables. 1Included in the
nonexecutable category are "type specification” statements,
"array declarators," "DATA" statements, "FORMAT" statements,
storage definers, and "definition" statements.

Radie fhaek

64

P

MODEL 4 FORTRAN FORTRAN PROGRAM STRUCTURE

TRS-80 °

Type Specification Statements

Some "types" of variables represent integer numbers, others
represent real numbers, and others represent numbers that,
for reasons of precision, must take up extra storage space.
The next chapter discusses the different types of variables.

Variables beginning with certain letters are by default a
certain variable type. For instance, all variable names
beginning with the letters I-N represent integers. But
sometimes, for reasons of clarity, it is necessary to have
an integer variable that, for example, begins with A. You
do this with a "type declaration" statement. For example:

INTEGER A
defines A as an integer variable. Type declarators include:

BYTE

DOUBLE PRECISION
IMPLICIT

INTEGER
INTEGER*4
LOGICAL

REAL

Array Declarators

You can express several values as a group of numbers, called

an array. FORTRAN requires, for storage allocation
purposes, that you "declare" the size of the array before
the program begins. For example:

DIMENSION A(1f)

declares that the array A consists of 14 elements, or
members. You can also declare array dimensions in
conjunction with type declarators. For example:

Radio fhaek
65

MODEL 4 FORTRAN FORTRAN PROGRAM STRUCTURE

TRS-80°

INTEGER A(10,10)

declares that array A consists of 199 (1¢ X 1¢) members.
Each member is an integer.

DATA Initialization Statements

You can set the value of variables with I/0 statements, for
example, READ, and with replacement statements; both are
executable. DATA statements, which are nonexecutable
statements, can also set the value. For example:

DATA A/34/

FORMAT Statements

You can use FORMAT statements to specify the appearance of
input or output data. For example:

19 FORMAT (16X,12)
Data processed through this statement takes on the shape

specified by 1#X and I2, which are called FORMAT
specificators and are discussed in later chapters.

Storage Definers

You may need to define two or more variables to be in the
same memory location. You can do this with storage defining
statements. For example:

EQUIVALENCE (A,B)

puts A and B in the same storage locations. The two
storage-defining statements are:

COMMON
EQUIVALENCE

Radio fhaek
66

MODEL 4 FORTRAN FORTRAN PROGRAM STRUCTURE

TRS-80 °

Definition Statements

A FORTRAN program can consist of a "main" program and one or
more "subprograms," and you must "title" these program
units. For example:

SUBROUTINE CREDIT(A,B,C)

declares that your statements which follow are part of the
SUBROUTINE CREDIT that uses the variables A, B, and C.
Definition statements include:

BLOCK DATA
FUNCTION
SUBROUTINE
PROGRAM

The FORTRAN Program

The "source" program brings together your individual FORTRAN
statements. It is a listing of the FORTRAN statements. The
computer executes the statements in the order that they are
listed, except when it executes a control statement that
causes "branching" of the program.

PROGRAM BRANCHING

These statements generate branching within the program
(intraprogram branching), cause the program to branch to an
external program (subprogram branching), or terminate the
program.

Intraprogram Branching

GO TOs and DO loops cause branching inside the main program.
This eliminates the need for typing the same set of
statements again and again. For example:

20 A=A+1.8
IF(A.LT.B) GO TO 2§

Radio fhaek
67

MODEL 4 FORTRAN FORTRAN PROGRAM STRUCTURE

TRS-80 °

The variable A is incremented by one and then compared to B.
Control transfers to statement 2§ until A is no longer less
than (.LT.) B.

DO loops are specialized forms of GO TOs. The DO loop
provides a simple way of looping a program through the same
commands for a given number of times.

Consider this example:

DO lﬁ I=lrlg12
N=N+1I
10 CONTINUE

Here the loop is executed 5 times (I is equal to 1,3,5,7,
and 9). Statement 1§ is a CONTINUE statement. This is a
common way of marking the end of a loop, because the
CONTINUE statement causes no action to be taken by the
computer. (For more information on DO, see Chapter 1f0.)

Subprogram Branching

Branches to subprograms are somewhat different. When
control transfers to a function or subroutine, the computer
executes statements in the subprogram. After executing all
the statements, control returns to the main program.

Execution of the main program begins at the point
immediately following the call to the subprogram. Branching
to subprograms is a part of "segmenting" programs, which is
discussed in Chapter 9.

Order of Statements

To execute properly, the statements in your program or
subprogram must be in the following order:

1. Definition statements

Radie Sfhaek
68

MODEL 4 FORTRAN FORTRAN PROGRAM STRUCTURE

TRS-80 °

Type specification statements, array declarator
statements, and the EXTERNAL statement (dlscussed
in Chapter 1§)

Storage definer statements (COMMON must precede
EQUIVALENCE)

Data initialization statements

All executable statements

The END statement

The FORMAT and INCLUDE statements can appear anywhere in the

program.

Radio fhaek

69

MODEL 4 FORTRAN FORTRAN PROGRAM STRUCTURE

TRS-80°

Comment FORTRAN statement

{column 1) {columns 7-80)
1 C SAMPLE] [FIRC
2 REBDI(B]s [1j@D] s Pl [0
3 11 F@AT(F?.:&F?.E‘;F?.?)
43 AVEL B 10A B B B ICDT 7] [BL
) TITEI(S]s (20D 1A s [AVE
= L FIC AT B E PEFIZLBYE DB B P FA. 13]G s [F1 7. 14/
7 1711 T IAVE H 1L Bh
8 E\ l

Label Continuation Marker
{columns 2-5) {column 6)
®
Radioe fhaek

79

PN

MODEL 4 FORTRAN

FORTRAN PROGRAM STRUCTURE
TRS-80 °

Line Number

1

Interpretation

This is a comment line. Note the "C"
in Column 1.

This is an I/0 statement. It tells the
computer to READ in three values from
the keyboard and store them into the
variables A, B, and C. The (5,1f)
means that the input is to come from
I/0 unit 5, the keyboard, and the data
appears as it is described by the
format in Statement 14.

This is a FORMAT statement. It
describes how data should look when it
is read in or printed out. In this
case, it applies to the READ statement
label in Columns 4-5. The F7.3 is
called a field specification. It
implies that the data processed through
it is Floating point (that is, it
contains a decimal point), it is seven
characters long, and it has three
characters to the right of the decimal
point.

This is a replacement line. It tells
the computer to set the variable AVE
equal to the sum of the variables A, B,
and C, divided by the constant 3.4.
Algebraically, this is the same as

This is another I/0 statement. It
tells the computer to WRITE the values
stored in the variable A, B, C, and AVE
to the I/0 unit 5 (the screen), using

Radio Sfhaek
71

MODEL 4 FORTRAN

FORTRAN PROGRAM STRUCTURE

TRS-80 °

the format specification in Statement

29.

This is another FORMAT statement. It
is labeled 2§ and, in this case, is
used for the output from the above
WRITE statement. The F7.3 has the same
meaning as in Line 3 (Statement 10),
and, in addition to that descriptor,
this specification has strings enclosed
in quotes. These are called "literals"
and print out along with the variable
values. The slashes (/) tell the
computer to skip a line before printing
the next record (set of data).

This is a continuation line. It
contains the remainder of the line
directly above it. Note the 1 in
Column 6.

This is a control statement. It
signifies the final step of the program
(the "logical" and "physical" end of
the program).

Radie fhaek
72

P

MODEL 4 FORTRAN FORTRA%)PROGRAM STRUCTURE

TRS-80

When you execute this program, the READ line stops and waits
for you to input values for A, B, and C. The format line
allows each value to be a maximum of seven characters and to
have a maximum of three decimal digits. Type:

12.5, 9.55, 19.4

This data is interpreted as 12.5, 9.55, and 1¢.g. The
output for this program using this data is:

A= 12.500
B = 9.55¢
C = 19.99¢0

AVE = 10.683

Radie fhaek
73

MODEL 4 FORTRAN DATA

TRS-80°

CHAPTER 6 / DATA

You can represent data as either constants or variables. A
constant is the data itself. Examples of constants are:

34.4 2 'BILL' -32.78356

A variable is a symbolic name that represents the number.
Examples of variables are:

AVE M123 ABCDEF Z

A variable is composed of one to six alphanumeric
characters, the first of which must be a letter.

Types of Data

Each type of data has its own form and precision. The eight
types are integer, extended integer, byte, real number,
double precision number, logical, literal, and hexadecimal
number. (For further information, see "Storage Format,"
Appendix G.)

INTEGER

An integer is a whole number (no decimal point), the value
of which may be in the range -32768 to 32767. The following
are integers:

-32765 -85 1 20148

Integers are sometimes advantageous to use since they occupy
the least amount of storage space (only two bytes). Also,
the operations using integers are the fastest.

Radie fhaek
75

MODEL 4 FORTRAN DATA

TRS-80 °

By default, all variable names that begin with the letters
I-N are integer variables. For example:

NUM

is an integer variable, because it begins with N. You can
changes this by the declaration statement INTEGER:

INTEGER ACCTNO, XMAX

This line declares the variables ACCTNO and XMAX to be
integers.

EXTENDED INTEGER

An extended integer is a whole number the value of which is
in the range -2,147,483,648 to 2,147,483,647. The following
are extended integers:

76543215 -67839624
An extended integer occupies four bytes of storage space.
There are no default extended integers, so you must
"declare”" them with the INTEGER*4 statement:

INTEGER*4 AVE,NUM

This line declares AVE and NUM to be extended integers.

BYTE

A byte is a number the value of which is in the range -127
to 128. THe following are bytes:

=115 5 94

A byte consumes one byte of storage space. Bytes are often
used as arrays for string data (each string character

Radio fhaek
76

e

MODEL 4 FORTRAN DATA

TRS-80 °

requires one byte). There are no default bytes, so you must
"declare" them with a BYTE statement. For example:

BYTE AVE,NUM

declares AVE and NUM to be bytes.

REAL NUMBER

A real number contains a floating decimal point, and its
value lies between 1@**-38 and 1¢**38 (** means to the power
Of)o .)

In real numbers, the decimal point "floats"; in integers,
the decimal point is fixed at the extreme right of the
number. Examples: :

137.56 g.914 5.0 7.234

These are approximations that are precise to seven
significant digits, and they each occupy four bytes of
storage space. They can be represented in decimal form

345.322
or ip exponential notation
2.4842E-1

The above example is equal to 2.4842 x 1§ to the power of
-1, which is equal to @.24842. Variables beginning with the
letters A-H and 0-Z are by default real variables. For
example: B ' ’ ”

AVE -

is a real variable. You can define more variables as real
by using the REAL declarator. For example:

Radie fhaek
77

MODEL 4 FORTRAN DATA

TRS-80 °

REAL INC,NUM

declares INC and NUM to be real numbers.

DOUBLE PRECISION NUMBER

A double precision number may be in the same range as a real
number, but it is precise to 16 significant digits. It
occupies eight bytes of storage space and must be
represented exponentially. For example:

27.4332092134151DF (note, D instead of E)
The symbol D denotes double precision exponential.
Therefore, 27.4332@9134151DF represents 27.433289134151 X 1¢

to the power of @, which equals 27.433209134151 X 1, or
27.433209134151.

23.4949433Dp23
represents the value 23.4949433 X 1§ to the power of 23.
IMPORTANT NOTE: If you do not use the D notation when

typing a double precision number, FORTRAN assumes it is a
real number and rounds it off to seven signficant digits.

Other Examples
12345678901234D8 P491249671229D-12

There are no double precision variables by default, so you
must define them in declaration statements. For example:

DOUBLE PRECISION AVE,NUM

declares AVE and NUM to be double precision variables.

Radio fhaek

78

MODEL 4 FORTRAN DATA

TRS-80 °

LOGICAL

A logical is a one-byte representation of the values of
"true" and "false" that you can use in logical arguments.
(For further information, see Chapter 7.)

As constants you can represent them as:
.TRUE. and .FALSE.

These are stored (respectively) as:
-1 and ¢

You can also use them as integers with the range of -128 to
127. You must define logical variables by means of
declaration statements. For example:

LOGICAL L1,ANSWER

declares the variables L1 and ANSWER to be logical
variables.

LITERAL

A literal is a string composed of any characters in the
FORTRAN character set. As constants you can represent them
by enclosing them in single quotes. For example:

'BILL' 'HELLO'

You can also precede the string with the string's length
followed by the letter H. For example: S

4HBILL 5HHELLO

When stored in a variable, each character occupies one byte
of space; so the size of the variable determines the size of
the string. '

Radie fhaek
79

MODEL 4 FORTRAN DATA

TRS-80 °

For example, integer variables occupy two bytes of storage

space. Therefore, the largest integer string that any
integer variable can hold is two characters long. For
example,

IMEI
'MEN'

N
N

both set N equal to ME.

When using replacement statements, you can only assign
literals to bytes, logicals, or integer variables. You
cannot use a replacement statement to assign them to
extended integers, real numbers, or double precision
variables.

When you use replacement statements, the largest string that
one variable can hold is two characters. Often it is
necessary to use strings the lengths of which are longer
than this. .

You can eliminate this problem by storing strings in

variable arrays. Arrays and their uses in strings are
discussed later in this chapter.

HEXADECIMAL NUMBERS

You can use hexadecimal numbers (base 16) as constants by
preceding them with the letter X or Z and enclosing the
number (one to four digits long) in single quotes.

Generally, you can use integers to store hexadecimal
numbers. However, you can store hexadecimal numbers with
real variables only through DATA statements. For example:

N = X'Ag"
DATA A/X'Af64'/

store the hex value Af (decimal 16f) into the integer
variable N and the hex value Af64 (decimal 41g6g) into A.

Radio fhaek
8

MODEL 4 FORTRAN DATA

TRS-80 °

IMPLICIT Declaration

It is often convenient to define many variables in one
statement that begins with the same letter or range of
letters. Since it may become cumbersome to define each
variable in a type declaration statement, FORTRAN contains
the IMPLICIT statement.

The IMPLICIT statement defines all variables that begin with
a certain letter or range of letters to be of a certain
variable type. For example:

IMPLICIT INTEGER(A-H,0-Z), REAL(I-N)

declares all variable names beginning with the letters A-H
and 0-Z to be integers, and all variables beginning with
the letters I-N to be real variables. This is the exact
opposite of the default condition. 1In another example:

IMPLICIT DOUBLE PRECISION (D)
REAL DEV

declares all variables that begin with D, 'with the exceptlon
of DEV, to be double precision.

Scalar and Array Variables

The two types of variables are scalar and array. A scalar
may contain only one value; an array may contain many
values.

A scalar is identified by a single symbolic name. For
example:

TOT

An array is identified by a symbolic name followed by a
parenthetical subscript. For example:

ITEM(3)

Radio fhaek

81

MODEL 4 FORTRAN DATA

TRS-80 °

Both kinds of variables receive their values when the
program is running or through DATA statements (see
"Assigning Values to Variables").

You do not need declaration statements with scalars unless
you want to declare them to be a different type from their
default type (for example, you might want to declare A as.
INTEGER A). When you run the program, FORTRAN automatically
reserves storage space for them.

If you plan to use arrays, on the other hand, you must use a
special "dimension" declarator statement to reserve storage
space for them. You can append the variable list following
a type declarator (for éxample, INTEGER or REAL) to define
its size. For example:

REAL NUM(3,3,3)
defines NUM as a real three-dimensional array with 27 (3 X 3
X 3) elements. You can also define an array size with a
DIMENSION statement. For example:

DIMENSION ARRY(2#)

defines ARRY as a one-dimensioned array with 2@ elements.

ACCESSING THE ARRAY ELEMENTS

Arrays can have "length" and/or "height" and/or "depth,"
depending on the number of dimensions. The computer stores
an array in memory in a single-dimensioned list of the
elements of the array. (For further information, see
Appendix G.)

You can access an array by its subscript. Subscripts are
integer constants or variables, or algebraic expressions the
values of which are integer. a subscript can describe an
individual element.

Radio fhaek
82

N

MODEL 4 FORTRAN DATA

TRS-80 °

For example, you can think of a one-dimensional array as a
list. You can address the fifth element in the list as
ARRY(5). A two-dimensional array is then a "table," and
you can address an element in Row 4 and Column 3 as

ARRY (4,3).

Using the same analogy, you can think of a three-dimensional
array as a "book" of "tables." ARRY(2,4,3) describes th
element in Row 2, Column 4, Page 3. V

The following rules apply to subscripts:

& The number of subscripts in an array element
description must be the same as the number specified
in the dimension declarator. For example:

DIMENSION A(10¢,5)
A(lf) = 5.9

is not valid.

. If you use an algebraic expression as a subscript, it
must have an integer value when evaluated.

5 Subscripts themselves cannot have subscripts.
Assigning Values to Variables

You can assign values to variables with replacement
statements and with DATA statements. The following
replacement statement

A = 23.54

sets the value of A equal to 23.54. In this statement,
23.54 is an "expression." The following replacement
statement

A=A+B

Radie fhaek
83

MODEL 4 FORTRAN DATA

TRS-80 °

sets A equal to the value of A + B, or more exactly, A is
"replaced" by the sum of A and B (B remains unchanged).
(For further information on expressions, see the next
chapter.)

DATA statements are nonexecutable assignment statements with
the following syntax:

DATA variable/data/variable/data/...

For example:
DATA A/12.4/B/13.2/C/208.3/3/9/
sets A = 12.4, B = 13.2, C = 20¢.3, and J = §.

You can assign values to arrays in this way also. For
example, consider a five-element array, NUM. You can assign
values through this statement:

DIMENSION NUM(5)
DATA NUM/12,42,23,23,109/

If you want to initialize all the elements of an array to
the same value, place an asterisk (*) after the number of
elements in the array, following by the initial value.
For example:

DATA ARRAY/10@*@.98/
sets all 19f elements of ARRAY equal to zero.

It is sometimes convenient to use DATA statements to give
string data values to arrays. For example:

BYTE WORD(5)
DATA WORD/'T','U','L','I','P'/

stores the string TULIP into the byte array WORD, so that:

WORD(1) =T

Radie fhaek

84

P

MODEL 4 FORTRAN DATA

TRS-80°

WORD(2) = U
WORD(3) = L
WORD(4) = I
WORD(5) = P

COMMON Variable Storage

COMMON DATA STORAGE

Sometimes it is necessary to store two different variables
in the same memory location. You can use the COMMON
statement to pass data to and from subroutines. (For
further information, see "Segmenting Programs," Chapter 9.)

EQUIVALENCE Statement

COMMON statements put variables in the same memory location
for use by subroutines. Sometimes it is convenient to put
variables into the same memory location for use in the same
program unit. You might do this to save memory space or to
give two variables the same value. You can do so with an
EQUIVALENCE statement. For example:

EQUIVALENCE (A,B,C)

putss A, B, and C into the same storage unit.

Radioe fhaek
85

MODEL 4 FORTRAN EXPRESSIONS
TRS-80 °

CHAPTER 7 / EXPRESSIONS

Expression is another word for data. It can be simple:
24 X ABS (5)

or complex:

5 + 6 X+Y ABS (5) - 24

A simple expression consists of a single operand. This may
be a constant, a variable, or a function. (For further
information on functions, see Chapters 9 and 11.) :

A complex expression consists of two or more operands
separated by operators. Operators are characters that tell
the computer what to do to the operand.

The three kinds of complex expressions are arithmetic,
relational, and logical.

Arithmetic Expressions

An arithmetic expression consists of constants, variables,

and functions connected by arithmetic operators. The
arithmetic operators are:

Operator Operation

+ addition

S subtraction

* multiplication
/ division

L exponentiation

In addition, the + and - operators serve as positive and
negative indicators.

Radio fhaek

87

MODEL 4 FORTRAN EXPRESSIONS

TRS-80 °

Important Note: You cannot place two operators side by
side. To express an operation that uses the negative value
of a number, you must enclose the minus sign and the number
in parentheses. For example:

A* (-B)

EXAMPLES OF ARITHMETIC EXPRESSIONS

H/I+B

5/4+3.2

3*5

PI*R**2
TOTAL+((SQRT(A-4.5)/C**D)~AVE(I,J))

When an arithmetic expression is longer than one or two
operands, it is difficult to determine the order of
execution. For example, is 10+2@/5 equal to 14 or 6?

For this reason, levels of evaluation hierarchy have been
established. The levels from highest to lowest are:

Functions

Parentheses

Exponentiation
Multiplication and division
Addition and subtraction

Within each level, the computer evaluates the expressions
from left to right, except for parentheses, which it
evaluates from the innermost set to the outermost.

Important Note: Whenever you use integers for division,
the computer truncates (chops off) the decimal portion of
the quotient, leaving only the whole number. For example,
the computer evaluates

30/4

Radio fhaek
88

AN

MODEL 4 FORTRAN EXPRESSIONS

TRS-80 °

as 7, but:
39.9/4.9

as 7.5.

Example 1
(6+9)*(5-4)/(2+1)

Here the computer first calculates the values of 6+9, then
5-4, and, finally, 2+l1. Then it multiplies 15 times 1 and
divides by 3. This statement is identical to the algebraic
expression:

(6+9) (5-4)

Here you can see the expression equals 5.

Example 2
6. 0**2+7 . @*3.0-3.8/(5.8*(1.0+2.8))

This equation, algébraically, looks like this:

2 3.9
6.9 + 7.8 x 3.8 = ==
5.0 x (1.8 + 2.0)

Upon evaluation, the expression equals 56.8.

Example 3
12.90*4.9-SQRT(25)/(6.5-5.5)

is evaluated as 43.4.

Radie Sfhaek

89

MODEL 4 FORTRAN EXPRESSIONS

TRS-80 °

When you use different variable or number types (modes) in
the same expression, the resulting number is in the mode of
the data item with the highest hierarchy. This hierarchy is
as follows, from highest to lowest.

Double precision
Real

Extended integer
Integer

Logical

Byte

The validity of statements containing mixed modes depends on
the operations performed. For example, adding a double
precision number to an integer results in a double precision
number. However, the sum is not accurate past the decimal

point. For instance, the computer evaluates:
2.99293944pg + 35/12

as 4.99293944, which represents an error of 15% (the correct
answer is approximately 5.909686187).

Relational Expressions
Relational expressions contain two arithmetic expressions

connected by a "relational" operator. The six relational
operators are:

.LT. Less than

.LE. Less than or equal to
.EQ. Equal to

.NE. Not Equal to

.GT. Greater than

.GE. Greater than or equal to

The computer evaluates a relational expression as "true" or
"false." It sets true statements equal to -1; false
statements equal to #. The computer first evlauates the

Radio fhaek
o

MODEL 4 FORTRAN EXPRESSIONS

TRS-80 °

arithmetic expressions, each in its own mode, on either side
of the relational operator. Then it compares the two,
using the highest mode. -

Relational expressions can assign values to logical
variables. For example:

L =1.GT.5
sets L equal to @ (false) since 1 is not greater than 5.

More often, however, you use relational expressions in
"logical IF" statements. Logical IFs contain the word IF
followed by a relational expression enclosed in parentheses,
followed by an executable statement. :

For example:

IF(1.LE.(5.9/3.8)) GO TO 208
GO TO 199

In such statements, the computer first determines if the
expression is true or false. If it is true, the computer
executes the next statement. Otherwise, the computer
executes the next line.

In the above example, since 1 is less than 5.8/3.8, control
transfers to Statement 2@¢@. Otherwise, the program
continues to the next line, in this case another GO TO.

Additional logical IF examples:
IF(A-B.GT. (D**2)) C=A-B

IF(D.NE.E) WRITE(5,5) D,E

IF(A.LT.g.g) CALL SUBl(A,B,C)

Radio fhaek

91

MODEL 4 FORTRAN EXPRESSIONS

TRS-80 °

Logical Expressions

Logical expressions are those the computer can evaluate as
either true or false. They can be simple or complex. A
simple logical expression consists of a single logical
operand. This may be a logical variable or a relational
expression. For example:

.TRUE. Ll 5.GT.A

A complex logical expression consists of two or more logical
operands separated by one or more logical operators.

The four logical operators are AND, OR, NOT, and XOR. The
computer evaluates them in the following way (A and B
represent logical operands):

- A.AND.B true only if A and B are true
A.OR.B true if either A or B is true
.NOT.A true only if A is false (note that

this operator requires only one
operand)
A.XOR.B true only if one of the operators

is true and the other false

(Note: The operations of logical operators are based on
bit-by-bit comparisons and Boolean logic. If you are
interested in how they work, consult a good mathematics or
computer logic book.)

These are examples of logical operations.
X.AND.Y 5.GT.X.0R.3.EQ.Y
Logical expressions assign values to logical variables:

LGl = A.LT.B.OR.A.GT.C

Radio fhaek

92

TN

MODEL 4 FORTRAN EXPRESSIONS

TRS-80 °

but often they represent multiple relational expressions in
logical IFs:

IF(A.EQ.B.AND.B.EQ.C) A=D

The above statement says that only if A is equal to B and B
is equal to C should A be set equal to D.

IF(M.LT.N.XOR.0.EQ.P.) A=B+M**2

The statement contained in the parentheses is only true if M
is less than N and if O is not equal to P, or if M is
greater than or equal to N and O equal to P (that is, it is
true only if one of the expressions is true).

The following hierarchy exists for the valuation of logical
expressions:

Parentheses

Function references
Multiplication and division
Addition and subtraction
Relational operations

.NOT.

-AND.

.OR., .XOR.

where the computer executes the operations within the same
level from left to right. If you compare this list to the
arithmetic hierarchy, you can see that the computer first
evaluates parentheses, then arithmetic expressions,
relational expressions, and finally logical operations.

Example
IF (AVE.EQ.SUBAVE.OR. (A/D-1) .LE.A.AND.Ll)

In this statement, the computer evaluates A/D-1, then
expression AVE.EQ.SUBAVE. After that, it compares the value

Radie Shaek
93

MODEL 4 FORTRAN EXPRESSIONS

TRS-80 °

found by A/D-1 to A. Next it compares that value to Ll.
Finally it compares that value to the value found by
AVE, EQ.SUBAVE.

Note: It is invalid to have two logical operators
adjacent to each other, unless the second operator is a
.NOT.. For example:

L1.AND..NOT.L2

is a valid expression; if L1 is true and L2 is false, then
the expression is true.

L1.AND..OR.L2

This is an invalid expression since it uses .AND..OR..

Also, a literal string may be only two bytes long in a
logical IF.

Radio fhaek
94

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80 °

CHAPTER 8 / INPUT/OUTPUT

Your F8f Compiler uses several different buffers, or
"logical units," to pass data to and from external devices
such as your disk drives, line printers, and terminal.

A buffer is a temporary storage area for information being
transmitted from one unit to another. It compensates for
the different speeds at which the units can handle data.

Unless otherwise specified, logical unit numbers (LUNs) are
assigned as follows:

LUN 1 and 3-5 to the screen or keyboard
LUN 2 to the liné printer
LUN 6-1¢ to the disk drives.

(Appendix B describes how to change the LUN assignments and
add more LUNs.)

Data is input and output in groupings called records. Each
record may consist of one or more subgroupings called
fields. The length of each record depends on the program
input/output commands and can be from 1 to 256 bytes long.
(256 bytes is the size of the buffer.)

Opening a LUN

In order to perform input and output (I/0), you must open a
LUN between the computer and the I/0O device. You can let
the computer do it automatically, or you can use the OPEN
subroutine provided in the FORLIB FORTRAN library.

LETTING THE COMPUTER OPEN THE LUN

Your computer opens a LUN the first time it encounters a
READ or WRITE to it. It sets the record length by default

Radio fhaek
95

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80 °

to 128 bytes. When a disk file is involved, your computer
assigns a default name to the file, based on the LUN used:

LUN ' Default filename
6 FORT@6/DAT
7 FORT@7/DAT
8 FORT@8/DAT
9 FORT@9/DAT

19 FORT1@/DAT

Consider the following program:

READ(5,18) A

19 FORMAT (F8.3)
WRITE(6,19) A
END

In this example, your computer opens LUN 5 (the keyboard)
and stops execution of the program until you enter a value
for A, using FORMAT 10. (FORMATs are explained later in
this chapter.) It then opens LUN 6 (a disk drive), gives it
the default filename FORT@6/DAT, and then writes A to it
using FORMAT 1f.

USING THE OPEN SUBROUTINE

Letting the computer opens LUNs can be convenient, especially
for output to your printer or for input and output with your
screen. However, if you plan to input and output files to
and from the disk, assigning default names limits the number
of files you can use. This method also wastes disk space
because the computer automatically sets the record length to
128 bytes and that amount is seldom needed. ;

The alternative is to use the OPEN subroutine. The syntax
for addressing the OPEN subroutine is:

CALL OPEN(logical unit number,'filename',
record length)

— Radio Ffhaek
96

.

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80 °

The OPEN subroutine opens a buffer between the computer and
the device specified by the LUN. This can be any device but
is generally a disk drive. After you do this, you have a
file with the valid TRSDOS filename you specified to which
you can write data. To access an existing file, you again
use the CALL OPEN, and then you can read from it as well as
write to it.

An example of a valid OPEN is:
CALL OPEN(6,'ACCT/FIL:1"',49)

This opens a file called ACCT/FIL on Drive 1 accessed by
Logical Unit 6. The file's records are 4f¢ bytes long.

The record length must be an integer constant or variable
the value of which is in the range 1 to 256. The record
length must be large enough to store all your data. (The
necessary length depends on your FORMAT statement and
whether you are using direct or sequential accessing. The
overhead involved in each is discussed later in this
chapter.)

A file, once opened, remains open until an ENDFILE command
closes it. For example:

ENDFILE 6

closes the file associated with LUN 6. If this command is
not included, the computer closes the file automatically
when it completes program execution.

INPUT AND OUTPUT FIELDS

You can "format" or "unformat" FORTRAN input/output
operations. Formatted READs and WRITEs use a FORMAT
statement, and unformatted READs and WRITEs do not use a
FORMAT statement.

Radie fhaek

97

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80 °©

Unformatted Data

Unformatted READs and WRITEs read and send information in a
"bit stream." That is, data is stored in memory exactly as
read off the disk, and data is written to your diskette
exactly as it is stored in memory.

To use unformatted READs and WRITEs, simply state READ (or
WRITE), followed by the LUN in parentheses, followed by the
variable list. For example:

READ(6) A, B, C

WRITE(7) A, B, C

input A, B, and C from LUN 6 and output them to LUN 7,
unformatted.

Unformatted data is stored with a delimiter (separator)
between every field but has no delimiter between records.
Thus, it usually occupies less space on the diskette.
However, you can use such data only for diskette
input/output, and then it must always be reread as
unformatted data.

Formatted Data

Formatted READ/WRITE's read and send data according to the
format set in the FORMAT statement. A formatted READ/WRITE
statement uses a label that indicates which FORMAT statement
the computer should use.

FORMAT statements are nonexecutable and describe to the
computer how a given data item should look on input or
output. The syntax of a FORMAT statement is:

label FORMAT(specification list)

where label is a statement label and the specification
list consists of "field" descriptor types, parentheses,
carriage controls, and delimiters.

Radio fhaek
98

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80 °

The 1§ field descriptor types are A,D,E,F,G,H,I,L,P, and X
fields and literal descriptors. Each has its own purpose
and syntax, which is discussed on the following pages. Each
descriptor in the specification, with the exception of X and
H fields and literal descriptors, must have a corresponding
variable listed in the READ or WRITE statement and be
separated by a comma or slash (/).

Field Descriptors

The general syntax for the following descriptors, unless
otherwise specified, is:

rFw.d

where r is an integer representing the number of times to
repeat the current descriptor before using the next
descriptor. The next letter, F in this case, is the field
descriptor. w is the width of the field, and 4 is the
width of the decimal portion of the field. (Note: Not all
descriptors use all these dimensions.)

For example, the F descriptor is for floating point data;
so an Fl4.5 field is broken down as:

wwwwwwww.ddddd

— s mm e e em em e am e em mw em e

where the w's represent the whole number portion of the
number and the d's represent the decimal portion of the
number.

Radie Shaek
99

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80°

Strings Stored in Variables

A field: raw

The A desciptor inputs or outputs charactor strings

(literal or Hollerith). The maximum width w for
transmitting a variable depends on the storage requirements
for that type of variable. Real variables require four
bytes for storage; so the maximum usable width for the
FORMAT description of a real variable is A4. Integers
require two bytes of storage; so the maximum usable width is
A2,

Input: If the field width w exceeds the storage size
of the variable type into which it is to be read, the
rightmost w characters are input into the variable (that
is, the left characters are truncated). If the field width
is smaller than the variable size, the data is
left-justified inside the variable.

Examples
Input Variable Stored

Field data type as

Al A byte A

A3 ABC integer BC

Al ABCD real Abbb

A4 ABCD real ABCD

A7 ABCDEFG real DEFG

A8 ABCD EFG dbl. pre. ABCDDbEFG

Output: If the field width w exceeds.the storage
size of the variable, the data is right-justified in the
field. If the field width is smaller than the variable
size, the farthest left w characters of the variable are
written.

Radio fhaek
199

MODEL 4 FORTRAN

INPUT/OUTPUT

TRS-80 °
Examples
Stored Variable Output

Field data type ‘as

Al Ab integer A

A2 AB integer AB

A3 AB integer bAB

A3 ABCD real ABC

A6 ABCD real bbABCD
A7 bABCDEFG dbl. pre. - bABCDEF

Double Precision

D field: rDw.d

The D descriptor inputs or outputs double precision numbers
in the exponential form:

signf.decimalDsignexponent

The total width w should be seven more than the decimal
portion d to ensure that the signs and significant figures
are kept.

Input: Data input under D specifications can be in
one of three external formats. First, it can be in the
actual exponential form. In this case, the computer
converts the number to its real value, if possible, and the
D portion of the descriptor is ignored. Second, data can
contain a decimal point, in which case it is read in as is,
and again the D ignored. Third, it can be an integer with
the d portion determining the decimal location (the blanks
are interpreted as zeroes). For integer input, the number
must be right-justified within its field. ‘

Radio fhaek
191

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80 °
Examples
Input Stored
Field value value
D19.12 -%.4999291448329D3 -499,9291448329
D15.8 bbbl19.9392@4919 19.93920491¢
D15.8 bbbbl19283928571 192.83928571

Output: Data output under D specifications is
right-justified in its field. The computer converts the
internal value to D notation and rounds it to fit the field.

Examples
Internal
Field value Output
Dl4.7 4932.8588321 b@.4932859D+74
pl8.11 -.85893917477 -.85893917477D+08
D15.8 .9@3083824888 bg.30838249D-02

E field: rEw.d

The E field descriptor inputs or outputs numbers in the
exponential form:

sign@.decimalEsignexponent

The width w should be seven more than the decimal portion
to ensure that all signs and significant figures are kept.

Input: Data input under E specificatiions can be in
one of three forms. First, it can be in integer form with
the d portion determlnlng the decimal size. Second, it can
be real and input as is (that is, the decimal point in the
field description is ignored). Third, it can be exponential
with the number converted to real and the d ignored. For
integer input, the number must be right-justified within its
field.

Radio fhaek
192

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80 °
Examples
Input Stored
Field value value
El2.5 -P.48293EDb@3 -482.933
El3.6 bbbb9348299bb 934.8299
E1g.3 bbbbl24.43 124.43

Output: Data output under E specifications are
right-justified within the field. The computer converts the
internal value and rounds the number to fit the field.

Examples
' Internal
Field value Output
El2.5 823.0993 b .82310Ebg3
El4.7 -.09@38414 -9.3841490E-03
El4.5 923.9 bbb@.92390EF@A3

Real and Double Precision

F field: rFw.d

The F FORMAT field inputs and outputs real and double
precision numbers. The general form of values processed by
this field is:

signinteger.decimal

Input: Data input under F specifications can be in one
of three forms. First, it can be in integer form where the
d portion determines the decimal size. Second, it can be
real and input as is (that is, the decimal point in the
field description is ignored). Third, it can be exponential.
In this case, the computer converts the number to real and
again the 4 is ignored. For integer input, the number
must be right-justified within its field.

Radio fhaek
193

MODEL 4 FORTRAN

TRS-80

Examples

Field

F7.2
F6 .'l
Fl2.3

Input
value

b45.99b
b94754
bb-@.85831E4

INPUT/OUTPUT

Stored
value

45.99¢0
9475. 499
-8583.1

Output: Values output in an F field are right-justified in

their field. The field must be large enough to allow the
integer portion of the number to be output in its entirety.
If the number is too large, a portion of the data is output
with an asterisk in the middle. The decimal portion, if too
large for the field, is rounded to fit the field. After
giving you an FW Compiler runtime error, the Compiler
outputs the number right-justified in the field.

Examples
Stored Output
Field value value
F6.2 392.8 b392.84
F8.3 3943.9401 3943.9¢01
F8.5 7.9492E-02 bb.#g949
F19.7 131.93492 13193499 *6

Real and Double Precision

G fields: rxGw.d

The G descriptor inputs and outputs real and double
precision data. This descriptor acts as an F descriptor for
some data and as an E descriptor for other data, depending
on the size of the data.

Input: Data input under G specifications can be in one
of three forms. The first is integer form in which da
determines the location of the decimal point. Second, it
can be real. The 4 portion is ignored, and the number is

Radie fhaek

194

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80°

input as is. Third, it can be exponential. The computer
converts the number, if possible, to its real form, and the
d is ignored. For integer input, the number must be
right-justified in its field.

Examples
Input Stored
Field value ' value
Glg.3 bbb29849bb 2984.9904g
Gl2.5 bbbl193.94bbb 193.94
Gl3.6 9.99434E05bb 99434.9

Output: The format of G-specified output depends on
the magnitude of the data to be output. If the number has
d or fewer significant digits, it is output as Fw.d.
However, if the number has more than d significant digits,
it is output as if the Gw.d were Ew.d. Numbers
output as real are followed by four blanks, and those
expressed as exponential are right-justified.

Examples
Stored Output
Field value value
Gl4a.7 395.94 bbbb395.94bbbb
Glg.3 3094.949 b .309EbgF 4

H field: wHstring or 'string'

The H descriptor inputs and outputs string data. The
string must be exactly the same size as given by w and
not enclosed in quotation marks. Blanks are considered
characters. Alternatively, you can enclose the string in
single quotes, with no size or H listed in the descriptor.

Input: When you use the H field for input, you must
put w place holders after the H to reserve space for the
incoming value. The new characters replace the place

Radio fhaek
195

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80°

holders on input. The computer stores the string exactly
as input. The same is true if you use quotes.

The next time you use the FORMAT statement, it contains the
new literal field. This is convenient, for example, when
changing a heading in a FORMAT line.

Examples
Input Stored
Field value value
8Hbbbbbbbb bbTRSDOS bbTRSDOS
'STRING' TOTALS TOTALS
"bbbbbbbb' AVERAGED AVERAGEDb
6HSTRING bDOGShb bDOGSb

Output: Data output with the H FORMAT descriptor is
output exactly as listed after the H. The computer outputs
data with the H FORMAT descriptor exactly as listed. If you
use quotation marks and the output line requires a single
quotation mark, then use two successive quotation marks.

Examples
Field Output
6HbVALUE bVALUE
8HINCOMEDbDb INCOMEDbb
"ACCOUNT' ACCOUNT
'TACC''T NO! ACC'T NO
Integers

I fields: rlIw
I fields input and output integer numbers.

Input: Numbers input under I specifications are
right-justified in the field; blanks are considered zeroes.

Radio fhaek

196

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80 ©
Examples
Input Stored
Field value value
16 -483bb -48309
I4 bb98 bb98
I8 -4348391 -4348391

, Output: Numbers output under I specifications are
right-justified in the field. If the number is too large
for the field, the computer prints an asterisk before the
rightmost w-1 digits.

Examples
Stored Output
Field value ’ value
I6 -943 bb-943
I4 39849 *849
I8 90930949 9093909490
Logical

L fields: rlw
The L descriptor inputs and outputs logical data.

Input: Data input under L specifications is either T
(TRUE) or F (FALSE). Blanks may precede and follow
the pertinent characters.

Examples
Input Stored
Field value A value
L6 bbbTbb -1
LS5 TRUEDb -1
L4 Fbbb ")
®
Radie fhaek

197

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80 °

Output: Data output under L specifications is either T
or F with the character being right-justified within its
field.

Examples
Stored Output
Field value value
Ll ') F
L3 -1 bbT
L5) bbbbF

Scaling Factor

P Descriptor: nP field specification

The P descriptor sets the scaling factor on F, G, E, and D
input/output so that the computer, depending on the
conditions, multiplies or divides the data by the nth
power of 1f. It automatically sets the scaling factor to
zero at the beginning of each formatted READ or WRITE. If
it encounters a P descriptor in the FORMAT statement, it
changes the scaling factor to the one given. The scale
remains the same until a new P is given or the end of the
I/0 is reached.

Input: During input, the scaling factor causes the
input data to be divided by 1@**n before being stored.
Scaling occurs only on nonexponential values. When the
computer inputs exponential data, it ignores the P.

Examples
Input Stored
Field value value

1PF6.2 - 775.34 77.534
-2PEl1g.3 bbbbb49528 4952.0
2PFl1g.3 -@.343Ebfg4 -34.30¢

®

 Radio fhaek

lg8

MODEL 4 FORTRAN INPUT/OUTPUT
TRS-80 °

Output: The effect of the P descriptor on output
depends on the type of field following the P. For E, D, and
G fields large enough to be considered E fields, the decimal
place shifts to the right n times and the exponent is
reduced n times (the value remains the same). For F
fields, and G fields small enough to be output as F fields,
the stored value is multiplied by 19**n before being
output.

Examples
Stored Output
Field value value
1PE12.5 7.88420E05 b8.88420EbJ4
2PF6.2 234.91 : 2349.1
-1PGl0.3 4.34 4.34
-1pPGl@.3 1943.943 bfd .21 9EbFS

Skipping Spaces

X field: nX

The X descriptor does not convert any data or refer to any
I/0 list item. When used, it skips n characters before
processing the next field.

Input: The X field causes'input to skip over n

columns in the record before reading the next data item.

Examples
FORMAT - Input Stored
specification value value
(5X,F6.3) | 93844b45391 45,301
(F5.1,3%X,12) 85.4bbbblf 85.4, 14

Output: The X field causes output to skip n spaces
before printing another field.

Radie fhaek
199

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80 °
Examples
FORMAT Stored Output
specification value value
(5X,F6.3) -3.342 bbbbb-3.342
(3X, '"TOTAL"'") bbbTOTAL

Interpreting the Specification List:

For input, the computer reads the specifications from
left to right to the end of the list. If it doesn't read
all the variables listed in the READ statement, it reuses
the FORMAT specifications. Each time it restarts the
specification list, the computer reads a new record. It
also reads a new record whenever it encounters a slash (/).

Example

READ(5,1¢) A,B,C,D
1¢ FORMAT(F6.4,F1g.1)

In this example, the computer reads A and B from one record
and C and D from the next. The format descriptor
corresponding to A and C is F6.4, and the descriptor
corresponding to B and D is F1{.1l.

On output, the interpretation follows the same rules, with a
few additions. Carriage control statements for your printer
and screen are given in the FORMAT specification list. The
carriage control character is optional, but if present, it
is the first specification in each list.

A zero in that position causes your printer or screen to

skip two lines before printing the next record, a 1 causes

it to go to the next page before printing, and blank causes
it to skip one line. Any other character is not supported by
Radio Shack and usually causes the printer to skip one

space. ‘

Radio fhaek

119

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80 °

Important Note: On a FORMAT statement for a WRITE to the
screen or printer, the first character in the specification
list must be carriage control command, FORMAT('@';...), a
blank character enclosed in quotes, FORMAT(' TEST = Veed),
or an X field, FORMAT(5X,...). If it is not one of these,
you may lose the first character of each line.

Example

WRITE(5,1¢) A,B,C,D,E
19 FORMAT('@',F6.1)

In this example, the computer writes A, B, C, D, and E with
a blank line between each.

Slashes also have the effect of a carriage control command
on output. For every slash encountered, the computer starts
a new line (a new record).

Example

WRITE(5,1¢) A,B
19 FORMAT(1¢X,F6.2//10X,F4.1)

In this example, one blank line is between A and B.
You may also use parenthesis inside the specification. A
"repeat" factor before a parenthetical expression tells the

computer to repeat that particular specification any number of
times. For example:

FORMAT(2(10X,F5.2))
is the same as

FORMAT(19X,F5.2,10X,F5.2)

Radio fhaek
111

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80°

READ
The form of the READ statement is:

READ(LUN, format label, REC=record number,
END=label, ERR=label) variable list

The LUN gives the unit number from which the computer reads
data. It is required. The format label refers to a FORMAT
statement with that label elsewhere in the program. The
format label is optional. If you do not use it, the input
is unformatted (unformatted input is only allowed from the
diskette). The REC=record number finds the record number

of a file by direct access. This is discussed later in this
section.

The END=label option tells the computer where to go after
reading the last record from a file, and the ERR=label
option tells the computer where to go in case of an input
errror, such as no file of that name or a hardware problem.
If the END= or ERR= options aren't used, and an end-of-file
or input error occurs, the statement causes a fatal runtime
error (see Error Messages).

The names for storing incoming data make up the variable
list. The variables in the list must match in type the
corresponding specifications in the FORMAT list. They must
also be separated by commas.

You can read in array variables by listing each individual
element, by listing only the array name (no subscript), or
by using an implied DO loop.

Example 1
DIMENSION A(3)

L)

READ(6,18) A(l),A(2),A(3),B,C
READ(6,19) (aA(I),I=1,3),B,C
READ(6,18) A,B,C

Radie Sfhaek

112

MODEL 4 FORTRAN INPUT/OUTPUT
TRS-80 °

Each statement READS the three elements of the array A, as
well as B and C.

Example 2

BYTE N

DIMENSION N(2,2,2)

READ(3,10)(((N(I,J,K),I=1,2),J=1,2),K=1,2)
19 FORMAT (8A1)

WRITE(3,2¢)(((N(I,J,K),I=1,2),J=1,2),K=1,2)
29 FORMAT(1X, 8Al1)

END

This example uses nested implied DO loops to read eight
characters from the keyboard into ARRAY N and then write
them back to the screen.

The READ line is equivalent to:

DO 198 I = 1,2
DO 1¢gg J =1,2
DO 1¢g K = 1,2

READ(3,1¢) N(I,J,K)
199 CONTINUE

Note that the "I = 1,2" implied DO loop is the innermost and
"K = 1,2" is the outermost DO loop.

For two subscripts, the READ statement appears as follows:
READ(3,1¢) ((N(I,J),I =1,2),J = 1,2)

You can also use the READ statement without a variable list.
This lets you read Hollerith and literal constants into your
FORMAT lines.

Each time your computer executes a READ statement, it skips
the remaining portion of the record and reads a new record.
(You can also use certain commands in the FORMAT
specification list to instruct your computer to read new
records. See the discussion on FORMAT earlier in this
chapter.)

Radie fhaek

113

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80 °

Example 1

CALL OPEN(6,'ACCT/DAT',15)
5 READ(6,18) ACCTNO,BAL
14 FORMAT(F6.2,2X,F6.2)

GO TO 5

This example opens a file called ACCT/DAT, the records of
which are 15 bytes long, and READs the variables ACCTNO and
BAL (a two-character space is between ACCTNO and BAL),
performs some processing, and then returns to the READ
statement, where it reads a new record.

Example 2

DIMENSION PROJCT(25)

CALL OPEN(7,'LIST/FIL:1',143)

READ(7,1¢) NUM, (PROJCT (I),I=1,25)
19 FORMAT(I2,25F4.2)

&

END
In this example, you give an array PROJCT the dimension of
25 elements. The computer opens a file named LIST/FIL on
Drive 1; its buffer is LUN 7, and each record is 143 bytes

long. The computer reads NUM and then reads the 25 elements
of PROJCT.

Example 3
READ(6,ERR=200) NUM

208 STOP

In this example, you open the file FORT@P6/DAT (a default
name) and read an unformatted integer into NUM. The record
length is set by default to 128 bytes. Control transfers

Radie fhaek
114

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80 °

to Statement 2@@ if there is a problem with the input, that
is, if no file had that name.

Most of the previous programs are only portions of programs.
Several complete programs are at the end of this chapter.
But, logically, a program has no use if its only function is
to read in data and process it. It must communicate the
results of its actions to you or to a disk file. This is
done by means of the WRITE statement.

WRITE
The form of the WRITE statement is:

WRITE(LUN, format iabel, REC=label, ERR=label,
END=label) wvariable list

The LUN specifies the unit number where the data goes. It is
required. The format label refers to a FORMAT statement
elsewhere in the program. It is optional; if you do not use
it, unformatted data is output. (Unformatted data is only
allowed for disk file 1/0.)

The REC=label option writes to direct access files and
refers to the record number. The END=label option gives
the label of the statement to which control transfers if an
end-of-file is encountered during the WRITE. The

ERR=1label option gives the label of the statement to which
control transfers in case of an output error.

The variable list is optional. If the output is formatted
and a variable list is given, the items on the list must
have corresponding specifications in the FORMAT list. Each
item in the list must be separated by a comma. You can list
and array individually as elements, as the array name alone
(no subscript), or in an implied DO loop.

If you do not use a variable list, then your computer
outputs only the Holleriths and literals in the FORMAT
specification. This is useful, for example, for printing
headings on tables.

Radio Shaek

115

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80°

Each time your computer executes a WRITE statement, it

writes the data to the proper LUN in its respective field.
If, after it writes all the data, record space remains, it
fills that space with blanks and begins a new record the

next time it executes the WRITE. (You can also start new
records with various statements in the FORMAT statement. See
the discussion on FORMAT earlier in this chapter.)

If the computer is writing data to a disk where old data
exists, it destroys the old data and writes the new data in
its place.

Example 1
A= 24.4
B = 9.4
C=A+B

WRITE(5,1%¢) A,B,C
19 FORMAT(' ',F5.1,1X,F5.1,1X,F5.1)
END

In this example, the computer writes A, B, and C to LUN 5,
the screen. They each use a F5.1 field, separated from the
neighboring fields by a blank (1X).

Example 2

C =13.2
WRITE(7,10) C

19 FORMAT (F6.2)
END

In this example, the computer writes C to a diskette file of
the default name FORT@7/DAT, using an F6.2 field.

Sequential and Direct Addressing

The two kinds of file addressing in TRS—-8@ FORTRAN are
sequential and direct. In the examples so far, we have used

Radio fhaek
116

MODEL 4 FORTRAN INPUT/OUTPUT
TRS-80 °

only sequential addressing. In sequential addressing, the
computer reads or writes the records in the order that it
executes the READ or WRITE statements. Once it accesses a
record, it cannot access the same record again without
closing and then reopening the file. Direct addressing, on
the other hand, lets you access any record of the file at
any time.

Both direct and sequential addressing can be advantageous.
If you must read or write the whole file, you don't need the
record numbers; so you can use sequential addressing. At
other times, you may want to update a few selected records
and not bother reading over the previous records; so you use
direct addressing to save time.

Direct and sequential addressing store information on the
diskette in slightly different ways. In sequential
addressing, a delimiter (separator) follows each record. In
direct addressing, no delimiter exists. A blank record
follows the final record.

For example, to store 8 records sequentially in an F6.2
field, you need a record length of 7, and your file is 8
records long. If, on the other hand, you use direct
addressing for that file, your record lengths are 6 bytes
long, and the file contains 9 records.

Example 1

CALL OPEN(6, 'DATA/FIL',11)
CALL OPEN (7,'UNPAID/FIL',11)
5 READ(6,10,END=3¢) NUM,AMT
19 FORMAT(I4,F7.2)
IF (AMT) 2¢,5,5
2¢ WRITE(7,1¢) NUM,AMT
GO TO 5
30 ENDFILE 6
ENDFILE 7
END

Radio fhaek
117

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80 °

In this program, your computer reads in records sequentially
from DATA/FIL and then writes any records that contain a
negative value for NUM sequentially to UNPAID/FIL.

Example 2

CALL OPEN(6,'ACCT/DAT',11)
INTEGER ACCTNO
DO 20 I=20,3¢0
READ(6,1¢ ,REC=I) ACCTNO,BAL
19 FORMAT(I4,F7.2)
WRITE(5,15) ACCTNO,BAL
15 FORMAT(' ACCOUNT NUMBER ',I4, (3X,'BALANCE
X IS',F7.2))
20 CONTINUE
END

In this example, the computer accesses and reads records 2§
through 30 directly from a file call ACCT/DAT. Then it
displays these on your screen.

Example 3

REAL NUM(1¢)
CALL OPEN(6,'DAT/FIL',7)
DO 20 1=1,1¢
READ(6,10) NUM(I)

1§ FORMAT(F6.2)

20 NUM(I) = NUM(I) + 2.0
REWIND 6
DO 3¢ 1I=1,10
WRITE(6,10) NUM(I)

39 CONTINUE
END

In this example, your computer reads in a sequential file
containing NUM(I). It increments NUM(I) by 2.4 and then
gives the command REWIND. This command closes and then
reopens the file under the same specifications as before.
Then it writes the updated NUM(I) back to the disk file.

Radio fhaek

118

MODEL 4 FORTRAN INPUT/OUTPUT

TRS-80°

Example 4

19
29

DIMENSION A(10)

CALL OPEN(6, 'INVENT/DAT:1',5)
DO 24 1=1,1¢

A(I) = FLOAT(I)
WRITE(6,10,REC=I) A(I)
FORMAT(F4.1)

CONTINUE

END

In this example, a file named INVENT/DAT with 6 byte-long
records is opened on the diskette in Drive 1. The elements
of the array A are put into successive records of that file,
in F4.1 formats.

Radie fhaek

119

MODEL 4 FORTRAN SEGMENTING PROGRAMS

TRS-80 ©

CHAPTER 9 / SEGMENTING PROGRAMS

FORTRAN, like many other computer languages, runs
efficiently as a single main program unit. However,
sometimes it is convenient to break the program down into
several smaller subprograms. This is called segmenting the
program.

Segmenting a program may serve several purposes. First, it
can reduce the main program to a few key commands, thus
making it easier to discern and understand.

Segmenting is sometimes necessary when more than one person
works on a program. By assigning a certain segment of the
program to one person and another part to a second person,
you can write the entire program easier and quicker.
Segmenting assures a greater compatibility between each
person's coding.

Segmenting can be very helpful if parts of your program are
long or require great amounts of storage and other portions
of the program are short and require little storage. You
may use the long portion only occasionally but still want it
available. If you make the long program a subprogram, you
have access to it because the L8f linker lets you link a
main program with any compiled subprogram on your diskette.

You can segment your programs by using a series of GO TOs,
or you can use special FORTRAN features known as
subprograms. Subprograms are program modules that lie
before or after the main program and that the main program
can access. The main program transfers control to the
subprogram, executes the subprogram statements, and
transfers control back to the main program.

Radie fhaek

121

MODEL 4 FORTRAN SEGMENTING PROGRAMS

TRS-80°

FUNCTIONs

FUNCTIONs are subprograms that process data given them by
the main program; they then return one value. You may
already be familiar with one type of FUNCTION, the intrinsic
library function, which finds, for example, square root
(SQRT) and trigonometric functions (for example, COS).

FORTRAN lets you create your own functions that you can
access just like a llbrary function. You may call a
function from your main program by listing it as an
expression in a statement line, with the parameters
(variables and/or constants) it is to use listed
parenthetically after it. For example:

TOT = D + AVE(A,B,12.6)
says that TOT is to be set equal to the sum of D and a value
found by a FUNCTION called AVE. AVE uses the parameters A,
B, and 12.6 in its statements.
The basic syntax of a FUNCTION subprogram is:

FUNCTION function name(local variables)

function name = expression
RETURN
END

For example, you can use the AVE mentioned above to average
A, B, and 12.6. The subprogram takes the form:

FUNCTION AVE(X,Y,32)
W=X+ Y + 2

AVE = W / 3

RETURN

END

Note that the main program statement used A, B, and 12.6 for
the parameter names, but in the FUNCTION, we used X, Y, and
Z. The latter variables are known as "local variables."

Radie fhaek

122

MODEL 4 FORTRAN SEGMENTING PROGRAMS

TRS-80°

You use local variables to express the main program
parameters in the subprogram. By using local variables, you
can access the function several times using different sets
of parameters each time. For example, both

AVE(24.9,B,C)
AVE(D,E,F)

SAL
TOT

n

may access the function AVE.

Note: You may want to use the same main program variable
names to represent the local variable in the subprogram.
This is perfectly legitimate; however, in this chapter you
use variables with differing local variables.

Consider this short program:

DIMENSION A(1Q)
REAL MEAN
N=g

1 READ(5,5) A(N)

5 FORMAT(F6.2)
IF(A(N).EQ.#.8) GO TO 1¢
N=N+1

) GO TO 1

19 MEAN = AVE(A,N)
WRITE(5,20) MEAN

2§ FORMAT(' AVERAGE = ',F6.2)
END

FUNCTION AVE(X,I)
DIMENSION X(10)
- DO 1§ J=1,1
19 TOT = TOT + X(J)
AVE = TOT / 1
RETURN
END

This program demonstrates several rules concerning
subprograms. The main program parameters that are passed to

Radio fhaek

123

MODEL 4 FORTRAN SEGMENTING PROGRAMS

TRS-80 °

the function are the real array A and the integer N. Their
counterparts in the function are X and I. Note that the
local variables must agree in type with those listed in the
main program and that you must declare the size of the local
variable X. Furthermore, we use the same statement label in
the subprogram (label 1f§) that we use in the main program.
You may do this since the two program units are separate.
Finally, note how the name of the function (in this case
AVE) is the variable name of the final result of the
function.

SUBROUTINESs

SUBROUTINEs are another type of subprogram much like
FUNCTIONs. However, unlike FUNCTIONs, the SUBROUTINE can
return any number of parameters. For example, in the
program above, it returns the value AVE. A SUBROUTINE, on
the other hand, may find several values and return all of

them.

Unlike functions that you list as expressions in the
program, you access SUBROUTINEs from the main program by
means of a CALL statement. The CALL statement consists of
the word CALL, the name of the subroutine, and the
parameters (constants and/or variables) listed
parenthetically. For example:

CALL SUB1(A,B,12.6)

SUB 1 is the name of the subroutine, and A,B, and 12.6 are
the parameters passed to and from the subroutine. An
important difference here is that the variables in the
parameter list may or may not be defined previously in the
program. For instance, in the CALL statement above, A might
have been defined in the main program, and B is to be found
by the subroutine.

Radie fhaek
124

MODEL 4 FORTRAN SEGMENTING PROGRAMS

TRS-80 °

The subroutine itself has the following syntax:

SUBROUTINE subroutine name(local variables)

RETURN
END

Consider this short program:

PROGRAM MAIN
READ(5,1¢) A,B,C
19 FORMAT(F6.1)
CALL PROCSS(A,B,C,TOT,AVE)
WRITE(5,2¢) A,B,C,TOT,AVE

29 FORMAT(' A = ',F6.1/' B = ',F6.1/' C = ',F6.1/
1 ' TOTAL = ',F6.1/' AVERAGE = ',F6.1)
END

SUBROUTINE PROCSS(X,Y,Z,SUM,MEAN)
REAL MEAN

SUM = X + Y + 2

MEAN = SUM / 3.8

RETURN

END

In this example, A, B, and C are read in from the main
program, and the subroutine returns the sum and average.

The variables TOT and AVE are undefined until the subroutine
is CALLed and executed. Again note that the parameters of
the main program must match the subroutine local variables

in type and number.

The main program and the subroutine may pass parameters back
and forth, as shown above, or the passing may be only one
way. For example, if you want a subroutine to read in data,
it is not necessary to send the main program variables to
the subroutine. For example:

Radio fhaek
125

MODEL 4 FORTRAN SEGMENTING PROGRAMS

TRS-80 °

CALL READER(A,B,C)

END
SUBROUTINE READER(X,Y,Z)
READ(5,5) X,Y,Z

5 FORMAT(F6.2)

RETURN
END

In this example, A, B, and C have no values until READER is
executed.

It is also possible to have a program in which no parameters
are passed. For instance, if you wanted a program to print
all your column headings, you might have:

CALL HEADER

END
SUBROUTINE HEADER
WRITE(2,10)
19 FORMAT('1',3¢X, '"HOURLY REPORT OF'/32X,'TEMP'
1 'EXPERIMENT'///25X,'METER',20X, 'CURRENT'
2 25X, '"NUMBER',19X, 'READING')
RETURN
END

MORE SUBROUTINE OPTIONS

It is possible in F8@ FORTRAN to pass parameters by means of
COMMON statements. COMMON statements assign parameters in
the main program to the same memory location as the local

Radio fhaek
126

MODEL 4 FORTRAN SEGMENTING PROGRAMS

TRS-80°

variables of the subroutine. The necessary main program
parameters are put into a "common block" of storage in the
main program, somewhere before the CALL to the subroutine.
Inside the subroutine, another COMMON statement declares the
local variables to be in the same memory location as the
actual parameters. For example:

COMMON A,B,I
CALL SUB1

END
SUBROUTINE SUBL
COMMON X,Y,J

END
In this example, A, B, and I are put into the same memory
location as X, Y, and J. A is in the same location as D, B
is in the same location as E, and I is in the same location
as J. The advantage of using COMMON instead of listing the

variables after the CALL and SUBROUTINE statements is that
you save memory space. The above lines are equivalent to:

CALL SUB1(A,B,I)

END
SUBROUTINE SUB1(X,Y,J)

END

You can name the COMMON memory location blocks so that you
can use several different blocks without interfering with
the data in other blocks. For example:

Radio fhaek

127

MODEL 4 FORTRAN SEGMENTING PROGRAMS

TRS-80 °

COMMON/AREAl/A,B,C/AREA2/D,E,F
CALL SUB1
CALL SUB2

END
SUBROUTINE SUB1
COMMON/AREAl/T,U,V

END
SUBROUTINE SUB2
COMMON/AREA 2/X,Y,Z

END
In the above example, the block called AREAl contains A, B,

and C, and their SUBl counterparts T, U, and V. AREA2
contains D, E, and F, and their SUB2 counterparts X, ¥, and

Z.

To use variables in COMMON storage and to initialize them
with DATA statements, you must use a subprogram called BLOCK
DATA. As you can with the other subprograms, you can place
BLOCK DATA either before or after the main program. Its
syntax is:

BLOCK DATA subprogram name
COMMON/common block names/elements/
common block names/elements

DATA variable/data list

END

An example of a BLOCK DATA subroutine is

BLOCK DATA PRGl

REAL ITEM(3)
COMMON/AREA1l/A,B/AREA2/ITEM '
DATA A/34.3/ITEM/12.3,12.6,12.9/
END

Radio fhaek

128

po—

MODEL 4 FORTRAN SEGMENTING PROGRAMS

TRS-80 °

Note the following rules demonstrated by this program:

. You must declare the size of any arrays used in BLOCK
DATA subprograms. :
. It is not necessary to assign a value to every variable

in the COMMON list; however, you must list every item
in the DATA list in the COMMON list. 1In other words,
you may only initialize COMMON data in BLOCK DATA
subprograms.

: The BLOCK DATA subprogram cannot contain any executable
statements.

Using EQUIVALENCE and COMMON Together

You can use COMMON statements in conjunction with
EQUIVALENCE statements. Listing an EQUIVALENCE statement
after a COMMON statement causes the equivalent variables to
be put into the COMMON storage block. For example:

COMMON A, B,C
EQUIVALENCE (A,D)

in effect puts D into COMMON storage, since it is equivalent
to A.

You may extend the size of the COMMON area by using arrays
in the EQUIVALENCE statement. For example:

DIMENSION A(10)
COMMON B,C
EQUIVALENCE (A(l),B)

This statement stores A(l) and B in the same location and in
a COMMON block. It also makes A (2) equivalent to C and
extends the size of the COMMON block to include the
remaining members of A.

Note: You can extend COMMON storage forward but not
backward. For example:

Radioe fhaek

129

MODEL 4 FORTRAN SEGMENTING PROGRAMS

TRS-80 °

COMMON B,C
EQUIVALENCE (A(2),C)

is legal. It makes A(l) and B equivalent and A(2) and C
equivalent. However,

COMMON B,C
EQUIVALENCE (A(3),C)

is not legal because it implies that A(2) is equivalent to B
and that A(l) will be placed before B in the COMMON block.

You can list subprograms in the same file as the main
program. All examples so far have done that. However, you
may insert the subprogram into the object code in two ways.

INCLUDE

The INCLUDE statement causes a FORTRAN source file on your
diskette to be included in your program at the location in
the program where the INCLUDE statement is listed. Its
syntax is:

INCLUDE filename

Since your subprograms can be either before or after the
main program, the INCLUDE statement should be either before
or after the main program. For example:

PROGRAM SUMS

CALL PRINTR
END
INCLUDE PRT/FOR:1l
This program CALLs a subroutine named PRINTR. This

subroutine is stored in a file called PRT/FOR on Drive 1.
If you compile this program creating a listing file, you

Radie fhaek

130

MODEL 4 FORTRAN © SEGMENTING PROGRAMS
TRS-80

find that this subroutine has been INCLUDEd after the main
program.

Linking the Subprogram

Linking subroutines to the main program while in the L8¢
command mode is another way to use subroutines that your
main program accesses. For example:

L8¢ MAIN-N,SUBl,SUB2,FUNCl,MAIN-E

links the subprograms SUBl, SUB2, and FUNCl to the main

program MAIN. The subprograms must, of course, be compiled just
as the main program was. (For further information, see Chapter 4,
"The Linker.")

The object of this program is to find the average
and standard deviation for a list of numbers that
you input. This program uses subroutines and
functions. The main program CALLs READER, the
subroutine by which you input your list, a
subroutine to record the list on a diskette

called DSKRIT. It then uses two user-programmed
functions, AVE an STD, which find the average

and standard deviations respectively, and finally
it CALLs a subroutine which outputs the results to
the screen. Note that each subroutine uses the
list stored in an array, and in each subprogram

it must be dimensioned. Also note that the
subroutines all use local variables in their
variable list. This is not required, but is often
helpful in distinguishing between main- and
subprogram variables.

2NeNeNoNeNoReNeNeNeXeRe e Re o X o RO

PROGRAM CALLER
DIMENSION RESULT (1)
CALL READER(RESULT,N)
CALL DSKRIT(RESULT,N)
AVERAG = AVE(RESULT,N)

Radie fhaek

131

MODEL 4 FORTRAN SEGMENTING PROGRAMS

TRS-80 ©

19
2¢
3¢
a9

19
20

STDDEV = STD(RESULT,AVERAG,N)
CALL WRITER(RESULT,N,AVERAG,STDDEV)
END

This is the subroutine for inputting the list,
and is called READER

SUBROUTINE READER(ARRYIN,I)
DIMENSION ARRYIN(10)

DO 3¢ I=1,1¢

WRITE(5,19) I

FORMAT(' RESULT #',I3,' IS: ')
READ(5,20) ARRYIN(I)
FORMAT(F8.3)
IF(ARRYIN(I).EQ.F.8) GO TO 48
CONTINUE

RETURN

I=1I-1

RETURN

END

This subroutine, called DSKRIT, writes the list
to a diskette file called RESULT/DAT.‘

SUBROUTINE DSKRIT(ARYOUT,I)
DIMENSION ARYOUT(1@)

CALL OPEN(6,'RESULT/DAT',15)
DO 2§ J=1,1

WRITE(6,18) ARYOUT(J)
FORMAT(F8.3)

CONTINUE

RETURN

END

This subroutine finds the average of the list, and
is called AVE.

FUNCTION AVE(ARRY,I)
DIMENSION ARRY(1f)
DATA SUM/¢.98/

DO 1¢ J=1,1

Radio fhaek

132

MODEL 4 FORTRAN SEGMENTING PROGRAMS

TRS-80°

19 SUM = SUM + ARRY(J)
AVE = SUM / I
RETURN
END
C This function finds the standard deviation of
C the list, and is called STD.

FUNCTION STD(ARRY,AVRG,I)
DIMENSION ARRY (1)
DATA SUM/Q .4/
DO 1¢ J=1,1I
10 SUM = SUM + (ARRY(J) = AVRG) **2
STD = SQRT(SUM / I)
RETURN
END

This subroutine, called WRITER, outputs the list
its average, and its standard deviation to the
screen.

Qa0

SUBROUTINE WRITER(ARYOUT,I,AVE,STD)
DIMENSION ARYOUT(10)
WRITE(5,5)

5 FORMAT (' THE LIST OF RESULTS IS')
DO 1¢ J=1,1I

19 WRITE (5,20¢) J,ARYOUT(J)

2 FORMAT(' RESULT #',I3,' IS: ',6F8.3)
WRITE(5,30) AVE,STD

30 FORMAT(' THE AVERAGE IS: ',F8.3/
* ' THE STANDARD DEVIATION IS: ',F8.4)
RETURN
END

Radie fhaek
133

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

CHAPTER 1§ / FORTRAN STATEMENTS

FORTRAN statements tell the Computer to perform an
operation. This chapter contains an alphabetical listing of
each statement, with a brief definition of what the
statement does. Each listing includes:

1. The type of statement (executable or
nonexecutable). This is noted at the top
right corner.

2. A reference to other chapters that discuss the
statement (if any). This is also noted in the top
right corner.

3. The syntax to use in typing the statement. This
is in the gray box.

4. A description of the syntax.

5. Examples.

Three statements -- OPEN, OUT, and POKE -- are actually
subroutines. Therefore, you use them with the CALL
statement. For example:

CALL OUT(6,A)

CALLs the subroutine OUT.

Radio Sfhaek
135

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

ASSIGN Executable
Setting values for ASSIGNed GO TOs

ASSIGN integer constant TO integer variable

Gives a value to variables that the computer uses in an
ASSIGNed GO TO. The integer constant must be a
statement label, and the integer variable, the name of
the variable used in the ASSIGNed GO TO.

Example
ASSIGN 1¢¢ TO LABEL

sets label equal to 1@¢. Presumably an ASSIGNed GO TO
follows this statement later in the program.

See the Assigned GO TO statement for additional information
on how to use this statement.

Radio fhaek

136

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °©

BLOCK DATA Nonexecutable
Titling BLOCK DATA subprograms Chapter 9

BLOCK DATA subprogram name

Titles block data subprograms that initialize common block
data. The BLOCK DATA statement must be the first statement
of the block data subprogram. The subprogram name may be
from one to six alphanumeric characters, the first of which
must be a letter.

Example
BLOCK DATA SUBPRG

defines the block data subprogram SUBPRG.

Radio fhaek

137

MODEL 4 FORTRAN FORTRAN STATEMENTS
TRS-80 °

BYTE ' Nonexecutable
Declaring a byte variable Chapter 6

BYTE variable name(dimension)variable
name{(dimension)

Declares the given variables to byte size variables. For
arrays, you can give the dimension of the array in the
statement.

Example

BYTE CODE,NAME (2§)

declares CODE to be a byte variable and NAME to be a byte
array consisting of 2@ elements.

Radio Sfhaek
138

MODEL 4 FORTRAN

CALL
Accessing a subroutine.

TRS-80 ®

’ FORTRAN STATEMENTS

Executable
Chapter 9

CALL subroutine name(pa;ameters)

5’“%?‘“,""%“’

Accesses a subroutine elthet%from your program or from the

FORTRAN | FORLIB library.

one to six alphanumeric chag%cters, the first
The parameter§iare optional.

be a letter.

The subroutine name canybe from

which must
If wused, they

must match in type and number

in the SUBROUTINE ‘statement

Example

CALL READl(A,B N)

with the local variable list
@f the subroutine. -

;s:»«"
5 .
& o
5 N ;
£
& Pﬁ/

calls a’ subroutlne by the name of READ1, whlch uses the

varlables A, B, and N.

If the Subroutlne is in asse@bly language, subroutlne name

must be ‘a PUBLIC symbol.

o

e

P Ay
e .

(S%e

. ot

— Radio fhaek

‘Appendix M8f).

i

y

@

£

e

139

S e S AR

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

COMMON Nonexecutable
Common memory location declaration Chapter 9

COMMON variable list
or COMMON/block area name/variable list...

Assigns variables to COMMON areas of storage in order to
pass parameters between the main program and subroutines.
The block area name is optional. If used, it must consist
of one to six alphanumeric characters, the first of which is
a letter. The order of the variable list of the main
program COMMON statement must be consistent in type with the
list of the COMMON statement in the subroutine.

Example 1

COMMON A,B,I
defines A, B, and I to be in common storage.
Example 2

COMMON/AREAl/A,B,C/AREA2/D,E,F

defines A, B, and C to be in a common block called AREAl,
and D, E, and F to be in a block called AREA2.

Radio Shaek

14¢

MODEL 4 FORTRAN . FORTRAN STATEMENTS

tns-ao ®

CONTINUE : Executable
A "No-operation" executable statement Chapter 5

Fw
B R

CONTINUE

AR £ 2 418 e e S

Performs no actual operatio@;but serves as a place to jump
to when-an executable statement is required. r instance,
CONTINUE most commonly signifies the last line .of a DO loop,
since DO loops are required to end on an executable '
statement. (For more information, see DO Loop%&)

Exampleg

DO 1§ I=1,5

. *

R S e e

1 CONTINUE
The finél statement in the ﬁbop is the CONTINU

13

o
5,
=

LT o N

ESRT RN, O A SR y o

&

Radie fhaek

© 141

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

DATA Nonexecutable
Initializing variables Chapter 6

DATA variable list/data list/
variable list/data list/.....

Initializes variables at the beginning of the program. The
items in the variable list are separated by commas and

must have corresponding data in the data list. The
variable list and the data list must match in type. You
can list arrays by the variable name without any subscript.

Example 1

DATA A,B,N/12.4,14.5,9/
sets A equal to 12.4, B equal to 14.5, and N equal to 9
Example 2

DIMENSION N(1¢)
DATA N/19*@¢/B,C/9.9,9.8/

sets the ten elements of N equal to @, and B and C equal to
g.8. Note that the data list can be listed as:

number of items * initial value

Radio fhaek

142

P

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

DECODE Executable
Converts string to numeric.

DECODE (array,format statement label)variable list

Converts the contents of an array of characters into a
number and stores it in variable list. The resulting
number is in the format specified by the format
statement.

When decoded into a logical variable, a "T" or "F" in the
array is decoded as true or false (f or -1).

Note to BASIC programmers: DECODE is similar to the VAL
statement.

Example 1
DECODE (A,100)B

converts the string in array A into a number and stores it
in B. FORMAT Line 1¢f is used.

"Example 2

DIMENSION I(1)
I(l)="1l2"
DECODE (I,2) J
2 FORMAT(I2)
WRITE(5,3) J
3 FORMAT (1X, 'STRING CHARACTERS 12 ARE NOW DECODED
X AS NUMERIC : ',I2)
END o

decodes the string contained in I('12') into a number and
stores it in J. The resulting number is formatted by Line
2 - ‘

Radie Sfhaek
143

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °©

Example 3
DOUBLE PRECISION J
BYTE I(14)
WRITE(5,1)
1 FORMAT(1X,'TYPE A 14 DIGIT DECIMAL NUMBER ; ")

READ (5,2) I
2 FORMAT (14A1)
DECODE(I,3) J
3 FORMAT (F20.13)
WRITE (5,4) J
4 FORMAT(1X,'NOW IT IS DECODED INTO THIS NUMBER :
X ',F20.13)
END

lets you type in a 1l4-digit number that is stored as a
string in array I. It is then decoded into J, using the

F20.13 format.

Example 4

PROGRAM DEC
BYTE A(12)
DATA A/lll’ISIII.I,I21'7l'| llll!'|6l'l3l'l'!'
X l2|'l4l/
WRITE(3,99) A
» 99 FORMAT (1X,12al)

DECODE(A,10¢) Bl1l,B2

1990 FORMAT(2F6.2)
WRITE(3,1¢1) B1l,B2

191 FORMAT(1X,2F8.2)
END

decodes array A into two variables, Bl and B2, using format
line 1@@. Notice that Line 100 specifies a field wide
enough to hold the widest number (163.24). Also notice that
the two numbers in array A are separated by a blank
character (' ').

When using DECODE, do not use an array with leading spaces,
or DECODE will assume that the array is empty.

Radie fhaek
144

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

DIMENSION Nonexecutable
Dimensioning a variable Chapter 6

DIMENSION array name(dimensions),
array name (dimensions),...

Reserves memory space for arrays. The array may have a
maximum of three dimensions, and the total size of the
array depends on the size of available memory. The
statement must precede all executable program statements.

Examples
DIMENSION A(1lf)

reserves 1§ storage locations for A.
DIMENSION A(1f¢,1¢),B(5),C(3,3,4)

reserves 1@@ locations (1¢ x 10) for the array A, 5 for B,
and 36 (3 x 3 x 4) for C.

Radio Shaek
145

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

DO Executable
Looping Chapter 5

DO statement label integer variable=starting value,
'~ ending value, increment

Defines a "DO loop." The statement label represents the
lower boundary of the loop. The integer variable
initially equals the starting value and increases by the
value of the increment each time the loop is executed.

The DO statement repeatedly executes the loop to the labeled
statement until the integer variable is greater than the
ending value. The starting value must be a positive

integer constant or variable, and the ending value must be
an integer constant or variable greater than or equal to the
starting value. The increment is a positive integer
constant or variable and is optional. If not listed, the
increment is 1.

The following rules apply to DO loops:

The integer variable may not be an extended integer. You
may use it as a variable in the loop (for instance, as a
subscript), but it must not be modified inside the loop.

The final statement of the loop must be an executable
statement other than GO TO, RETURN, STOP, PAUSE, an
arithmetic IF, or another DO loop. If a logical IF is the
final statement, it may not have one of the prior statements
as its "true" option. A common way of ending a DO loop is
with a CONTINUE statement.

You may nest DO loops inside other DO loops; however, they
must be completely inside the next loop or terminate on the
same statement. For example:

Radio fhaek
l4e6

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °
DO 1¢ 1=1,10 DO 1¢ I=1,1¢
Do 5 J=1,1¢ DO 5 J=1,1¢
5 éONTINUE 19 éONTINUE
19 CONTINUE 5 CONTINUE
valid invalid

Example 1
DO 1¢ 1=1,10

.

19 CONTINUE

The loop runs from the DO statement to the CONTINUE
statement. The loop is executed 1§ times (I is equal to
1,2,3....19).

Example 2
DO 1¢ I=1,1¢
DO 1¢ J=1,10
DO 5 K=1,20,2
5 SUM = SUM + X(K)
19 CONTINUE
One loop is nested inside another loop that is nested inside
another loop. Two of the loops end with the same CONTINUE
statement; the innermost ends with a replacement statement.
The innermost loop is executed 19 times (K = 1,3,5,...19), and

the other two are also executed 1f times (I (and J) =
1,2,3...19).

Radio fhaek

147

MODEL 4 FORTRAN FORTRAN STATEMENTS
TRS-80 °

DOUBLE PRECISION Nonexecutable

Declaring a variable to be Chapter 6
double precision

DOUBLE PRECISION variable(dimensions),
variable(dimensions),...

declares the listed variables to be double precision
variables. If the variable represents an array, you can also
define its size in the statement.

Example
DOUBLE PRECISION DTOT,LIST(10)

declares DTOT to be double precision and LIST to be a double
precision array.

IMPORTANT NOTE: If you do not use the D notation when
typing a double precision number, FORTRAN ‘assumes it is a
real number and rounds -it to seven significant digits. (For
further information, see Chapter 6, "DATA.") ‘

Radio fhaek

148

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

ENCODE Executable
Changing internal format Chapter 5

ENCODE(array,format statement label)variable list

Converts the numeric contents in the variable list into a
string and stores it in the array. The format statement
controls the format of the resulting array.

Note to BASIC programmers: ENCODE is similar to the STRS
statement.

Example 1
ENCODE(A,10¢) B,C,D,E

converts B, C, D, and E into strings and stores them into
array A using the format line 10¢.

Example 2
BYTE L(20)
Rl = 45.62
R2 = 50.40

ENCODE(L,194) R1,R2
199 FORMAT(2F5.2)
WRITE(5,200)L
209 FORMAT(1X,20Al)

formats 45.62 and 50.§ into the 2F5.2 format, converts them
into strings, and stores them in string array L.

.Note: Logical variables are encoded as "T" for TRUE and
"F" for FALSE.

Radio fhaek

149

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

END Executable
Termination of the program Chapter 5

END

The physical termination of the program. This statement
must be the last statement in a main program or subprogram.

Example

A= 12.4
WRITE(6) A
END

The END statement is the last statement in this short
program.

Radio Sfhaek
159

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

ENDFILE Executable
Closing a file Chapter 8

ENDFILE logical unit number

Closes an open file. The logical unit number (LUN) must
be an integer constant or variable.

Example

ENDFILE 6

closes the file accessed by LUN 6.

Radio fhaek
151

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

EQUIVALENCE Nonexecutable
Declaring equivalent memory locations Chapter 6

EQUIVALENCE (variable list),(variable list),...

Lets you use the same memory location for several variables
during program execution. This gives more memory space for
the rest of the program. All variables inside each set of
parentheses are in the same memory location.

Examples
EQUIVALENCE (A,B,C)
sets A, B, and C into the same memory location.

DIMENSION A(1¢),B(10)
EQUIVALENCE (A(1l),B(1))

sets the elements of A in the same memory locations as the
elements of B. That is, A(1l) and B(l) are in the same spots.

DIMENSION A(1f8),B(5)
EQUIVALENCE (A(6),B(1))

sets A(6) in the same location as B(l), A(7) with B(2), and
SO on.

DIMENSION A(18),B(2,5)
EQUIVALENCE (A(1¢),B(10))

sets the elements of A into the same locations as the
elements of B. (Note: You can describe arrays in the
EQUIVALENCE statement by their size alone. In the above
example, B is 2 X 5 array (1§ elements), and for EQUIVALENCE
statements, B(2,5) and B(1f) have the same meaning as do
B(1l,1) and B(1l).)

Radio Shaek
152

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

EQUIVALENCE (A,B,C,D),(E,F)

sets A, B, C, and D into the same location, and E and F in
another location.

DIMENSION D(5)
COMMON A, B,C
EQUIVALENCE (C,D(1))

sets C and D into the same location, and also extends the
COMMON area to include all of D (the total COMMON area is
now seven words long). :

DIMENSION D(5)
COMMON A,B
EQUIVALENCE (B,D(2))

sets B and D(2) into the same location and sets A and D(1)
into the same location. It also extends the COMMON area to
include the remainder of D. The common area is:

A and D(1)
B and D(2)
D(3)
D(4)
D(5)

Note: If you are using subscripted (array) variable and

a scalar variable that have the same length, you must
specify the subscript of the array element. For example, if
A is a 4-byte real number and B(l) is a 4-byte array
element:

EQUIVALENCE(A,B)
is not valid, whereas:
EQUIVALENCE(A,B(1l))

is valid.

Radio fhaek

153

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

EXTERNAL Nonexecutable
Using functions inside of functions Chapter 9

EXTERNAL subprogram name list

You must use the EXTERNAL statement when an existing
subprogram is part of the parameter list of another

subprogram. The subprogram name represents the name of
either a library subprogram or a subprogram defined in the

program. The EXTERNAL statement must precede any executable

statements.
Example

EXTERNAL SQRT
A = FUNC(Al,A2,SQRT)

END
FUNCTION FUNC(A,B,C)
FUNC = C(A/B)

RETURN
END

In this example, the SQRT function is listed as a parameter
in the functin FUNC where its "local" variable name is C;
so it must be listed as EXTERNAL.

Radio fhaek
154

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

FORMAT Nonexecutable
Formatted I/O Chapter 8

label FORMAT(specification list)

Describes to the computer the type and physical appearance
of I/0 data. The label is a statement label that
corresponds to the statement label referenced in a READ or
WRITE. The specification list consists of the following:

Carriage Control Characters

The carriage control character functions only with output
to the printer or to the screen. When used, it is the first
specification in the list and may be

'9' or 1HM skip 2 lines before printing
A

'1' or 1H1 skip to the top of the next page
before printing

anything else skip one line before printing

The computer never prints the carriage control character.
If you do not use it in a WRITE to the printer or screen,
the computer takes the first character of the next
specificiation as the carriage control character and thus
does not print it. This may result in an error if that
specification is to contain printed data.

Field Descriptors

The field descriptors describe the actual appearance of
the data. Any number of descriptors may appear in the
specification list. The descriptors are:

Radie fhaek
155

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °
AW character I/0
rbw.d double precision exponential I/0
rEw.d exponential I/O
rFw.d floating point I/O
rGw.d general I/0
rHstring Hollerith (literal) I/O
ririw interger I/0
rLw logical 1/0
rPfield scaling I/0 fields
wX blank I/0
'string’ literla (Hollerith) I/O

where r is the number of times to repeat the field, w is

the total width of the field, and 4 is the width of the
decimal portion.

Field Separators

Commas or slashes separate individual field descriptors.
Commas serve only to separate the fields, but slashes also
serve as record terminators. Each time the computer
encounters a slash, it ends the current record and considers
the next field a new record.

Multiple slashes imply that the computer skip several
records before processing more data -- each slash represents
one record. For data it is writing to the screen or
printer, this means that the computer begins a new line
whenever it encounters a slash.

Parentheses

As shown in the syntax, parentheses enclose the entire
specification list. You may also include parentheses as a
specification. For example, parentheses may enclose several
field descriptors, and an integer may precede them.

4(F5.1,2X,I2)
This is analogous to the r in the field descriptors. It

means that the computer uses the enclosed list of
descriptors four times before going to the next descriptor.

Radie fhaek

156

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

Interpretation of the Specification List

The computer interprets the FORMAT list from left to right.
Each I/0 item must have a corresponding field descriptor.

If the computer uses all the field descriptors before

it inputs or outputs all the I/0 items, it repeats the entire
specification list. This constitutes a new record.

You may also use FORMAT statements with ENCODE/DECODE commands
(see ENCODE/DECODE) .

Example 1
19 FORMAT (I5,E16.9)
describes a record with the following layout:

iiiiis@P.dddddddddeEs e e

where i represents the integer number, s represents the sign

of the exponential number and of the exponent, d represents the
decimal portion of the exponential number, and e represents the
exponent. Any of the i's may be used for the sign of the
integer as needed.

Example 2
19 FORMAT (*1',19X,'ITEM NOS',3(3X,14))
describes a record with the following layocut:

bbbbbbbbbbITEMbNOSbbbiiiibbbiiiibbbiiii

where the b's are blanks and the i's represent the integer
numbers.

In addition, the record prints on a new page because of the '1'

Radio fhaek

157

MODEL 4 FORTRAN

FORTRAN STATEMENTS

TRS-80 °

Other examples of valid formats:
19 FORMAT (1X,F6.2,2X,F6.1)
2§ FORMAT (1@14,D2¢.13)

75 FORMAT (3¢X,'TOTALS'//(39X,Gl6.9))

Radio fhaek
158

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80°

FUNCTION Nonexecutable
Defining a function Chapter 9

FUNCTION function name(local variable list)

Defines a function subprogram unit and is the first
statement of a function subprogram. The function name
represents the variable found by the function, and it
represents the variable used to call the function.

The local variable list should correspond in type and
number with the parameters used in the main program function

call.

Example
FUNCTION AVERG(A,B,C)

titles a function called AVERG and uses the local variables
A, B, and C.

Radie fhaek
159

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

GO TO Executable
Unconditional GO TO's Chapter 5

GO TO statement label

Instructs your computer to move to another part of the
program and to begin execution there rather than following
the physical order of the program.

The statement that a GO TO jumps to must be executable. When
an unconditional GO TO is encountered in a program, control
immediately transfers to the statement with the given o
label. The label must be an integer number.

Example 1
GO TO 149

1909 CONTINUE

trqpsfers control to Statement 1§f.

Example 2

IF (A.LT.B) GO TO 1¢¢
A B
c A

190 + D
The GO TO is.used in conjunction with a logical IF
statement. If the logical statement is true, control
transfers to Statement 1@f@; if the statement is false, the A
= B statement is executed and then Statement 14f.

Radie fhaek
16

£

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 ©

GO TO Executable
Computed GO TOs Chapter 5

GO TO (statement label list), integer variable

Transfers control to the nth label in the statement label
list where n is the integer variable. The variable must

be positive, not an extended integer, and its value must
have been set before execution of the GO TO statement. If
the variable is less than 1 or greater than the number of
statement labels, control passes to the statement following
the GO TO.

Example

J =3

GO TO (10,20,30,49,59), J

sets J equal to 3. When the GO TO is executed, the computer
finds the third label in the list, which is 3¢, and
transfers control to that label.

Radie fhaek
16l

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

GO TO Executable
Assigned GO TOs Chapter 5

GO TO integer variable, (statement label list)

Transfers control to the labeled statement in the list that
is equal to the integer variable. The variable cannot

be an extended integer and must have received its value from
an ASSIGN statement (see ASSIGN). The statement label

list is optional.

Example

ASSIGN 199 TO LABEL

éo TO LABEL, (140,200 ,300)

gives LABEL the value 100, and when the GO TO is executed,
control goes to 1¢0. ‘

Radio fhaek
162

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

IF Executable
Arithmetic IF Chapter 7

IF (expression) label-l,label-2,label-3

Evaluates an expression and, based on the result, decides
what action to take next. The expression can be
arithmetic, logical, or relational.

The arithmetic IF statement evaluates the expression

in parentheses, and if the value is negative, control
is passed to label-l. If it is zero, control passes

to label-2, and if it is positive, control passes to

label-3. Any labels may be identical if necessary.

Example 1
IF(I-J) 109,200,300
If I-J is negative, the program goes to 19@; if @, to 200;
and if positive, to 300.
Example 2
IF (K) 109,100,200

If K is less than or equal to #, control passes to 100;
otherwise, control passes to 204.

Radie fhaek
163

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

IF Executable
Logical IF Chapter 7

IF(logical expression) executable statement

Evaluates the logical expression in parentheses, and if it
is a "true" expression, executes the statement. If the
expression is "false," the program passes on to the next
statement. The statement can be any executable statement
except a DO statement or another logical IF.

Example 1

IF (A.LT.B) B=(B-A)/B
C = SQRT(B)

compares A to B. If A is less than B, then the statement
B=(B-A)/B is executed, followed by the C=SQRT(B) statement.
If A is greater than or equal to B, then the B=(B-A)/B ‘
statement is ignored and the C = SQRT(B) statement is
executed.

Example 2 -

IF (A-12.¢.LT.B.AND.B.LT.C) CALL SUBl(A,B,C,D)
D= A

calls the subroutine if both A-12.¢.LT.B and B.LT.C are
true. If they are not true, D=A is executed immediately.

Radio fhaelk
164

MODEL 4 FORTRAN FORTRAN STATEMENTS
TRS-80 °

Example 3
IF (L1.0OR.L2) GO TO 24

Ll and L2 are logical variables. 1If either Ll or L2 is
true, control passes to 20.

Radio fhaek

165

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

IMPLICIT Nonexecutable
Declaring a range of default Chapter 6
variable types

IMPLICIT type(range),type(range)...

Redefines the default variable types. Type can be BYTE,
REAL, INTEGER, DOUBLE PRECISION, LOGICAL, or INTEGER*4. The
range can be one letter or a range of letters represented

by
first letter - last letter.

When the computer encounters a variable that starts with
that letter, it considers it the type given to it in the
IMPLICIT statement.

Examples

IMPLICIT REAL(I-N),INTEGER(A-H,0-%)

declares variables starting with the letters I through N to
be real and those beginning with A through H and O through 2%
to be integers (exactly opposite of the default values).

IMPLICIT DOUBLE PRECISION (D)

declares all variables starting with D to be double
precision variables.

IMPLICIT INTEGER*4(I-N)
INTEGER ITEM,NUMBER(1%)

declares all variables starting with the letters I-N to be
extended integers except for ITEM and NUMBER.

Radie fhaek

166

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

INCLUDE Nonexecutable
Bringing in outside programs Chapter 9

INCLUDE filename

Brings an outside source code into the current program at
the location in the main program where the INCLUDE statement
is listed. The INCLUDEd code can be, for example, a
commonly used subroutine or function. filename is any

valid TRSDOS file name. (Note: The included program can
contain only one program or subprogram; that is, the program
can have only one END statement.)

Example

INCLUDE PRINT/FOR

.

CALL PRINTR(NUM,DEP,BAL)

brings a file called PRINT/FOR into the main program. This
file contains a subroutine called PRINTR that the computer
later CALLs.

Radie fhaek
l67

MODEL 4 FORTRAN FORTRAN STATEMENTS
TRS-80 °

INTEGER Nonexecutable
Declaring a variable to be integer. Chapter 6

INTEGER variable(dimensions),variable(dimensions),..

Declares the listed variables as integers, overriding their
default type. If a variable name is an array, the INTEGER
statement also specifies its size.
Examples

INTEGER ACCTNO,CHKNO
declares ACCTNO and CHKNO to be integer variables.

INTEGER ACCNO(1@@) ,CHKNO(2¢,3,1%)

declares ACCNO and CHKNO to be integer arrays.

Radio fhaek

168

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

INTEGER* 4 Nonexecutable
Declaring an extended integer Chapter 6
variable.

INTEGER*4 variable name(dimensions),
variable name(dimensions),...

Declares the listed variables to the extended integer
variables. 1If the variable name is an array, you may
include its dimensions in the statement.

Example
INTEGER*4 INVENT(1¢),N

declares N to be an extended integer and INVENT to be an
extended integer array consisting of 1¢ elements.

Radio fhaek

169

MODEL 4 FORTRAN FORTRAN STATEMENTS
TRS-80 °

LOGICAL Nonexecutable
Declaring variables to be logical Chapter 6

LOGICAL variable(dimensions) ,variable(dimensions),..

Declares logical variable types (there are no default
logical variables). If the variable represents an array,
this statement specifies its dimension.

Example

LOGICAL L1,L2(5)

declares L1 to be logical and L2 to be a logical array.

Radio Sfhaek
179

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

OPEN Executable
Opening a disk file Chapter 8 .

CALL OPEN(logical unit number,'filename',
record length)

Calls a subroutine that opens a file for I/O. The logical
unit number is an integer that corresponds to a legitimate
disk LUN. The filename is any valid TRSDOS file name (note
that it is enclosed is single quotes). The record

length is an integer the value of which is between # and
256. The exact value of the record length is a function

of the access mode (sequential or direct) and the type and

amount of data.
Example
CALL OPEN (6,'TEST/DAT',25)
opens a file called TEST/DAT on a drive the records of which

are to be 25 bytes long. The logical unit to be used as a
buffer is LUN 6.

Radie fhaek

171

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

ouT Executable
Direct access to the I/0O ports Chapter 8

CALL OUT(port, byte)

Serves to output the value of byte to the I/0 port given
by port.
Example

BYTE A

CALL OUT (21,A)

sends the value of A to I/O port 21.

Radio fhaek
172

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

PAUSE Executable
Pausing in the middle of a program

PAUSE string

Temporarily stops the program, at which time the message

PAUSE or PAUSE string appears on the screen. The string
can be any alphanumeric message up to six characters long.
Pressing any key except <T> causes the program to continue.
Pressing <T> terminates the program.

Example
PAUSE CHDSK

prints PAUSE CHDSK on the screen and execution of the
program ceases until you press any key except <T>.

Radio Shaek
173

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

POKE Executable
"Poking" a value into memory

CALL POKE (integer,byte)

Inserts a value into memory. The integer specifies the
memory location, and the byte represents the value to be
POKEd.

Example .

CALL POKE(16412,1)

POKEs the number 1 into memory location 16412 (hex 4¢1C).

Radio fhaek
174

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °©

PROGRAM Nonexecutable
Naming a program

PROGRAM name

Titles your main program. This statement is optional, but
if you use it, it must be the first statement in the
program. The name must start with a letter and can

include up to five more alphanumeric characters. If you do
not use the PROGRAM statement, your computer automatically
assigns the name $MAIN to the program.

Examples
PROGRAM TEST1(

titles the program TEST1@.
PROGRAM Al

titles the program Al.

Note: The name you choose for your program should not be
the same name as a FORTRAN statement or function.

Radie Sfhaek
175

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

RAN Executable
Random number generator

RAN (real number)

Returns a random real number between # and 1. If the number
in the argument is less than zero, the first value of a new
sequence of random numbers is returned. If the number equals
zero, then the last random number generated is returned. If
the number is greater than zero, then the next number in the
sequence is returned.

Examples
A = RAN(-1.f)
sets A egual to some new random number.
A = RAN(fg.f)
sets A equal to the last random number generated.

A = RAN(1l.8)

sets A equal to the next random number.

Radie fhaek
176

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

READ Executable
Reading in a record Chapter 8

READ(logical unit number,format statement label,
REC=record number,END=statement label,
ERR=statement label)variable list

Inputs data from the keyboard or from a diskette data file,
depending on the logical unit number. The format
statement label and its associated comma are optional. If
you use them, the computer reads data in the format listed
in that statement. If you do not use them, it reads the
data in unformatted (only allowed for disk input).

The REC= option specifies the integer record number (for
direct access files). The END= option gives the statement
label of the next statement to be executed after reading
the last record of the file. The ERR= option gives the
statement label of the next statement to be executed in
case of an input error (hardware error).

The variable list is optional. If you use it, the
variables represent the symbolic name of the location in
which the data will be stored. If you do not use it, the
data is placed into the Holleriths of the FORMAT statement.
You use this to change Hollerith strings in the FORMAT
statement.

Example 1
READ (6,10 ,REC=N, END=20,ERR=100) A

In this example, 6 is the LUN, 1f is the FORMAT label, N is
the number of the record to be read, 2§ is the label of the
statement to be executed after reading the last record, and
199 is the lahel of the statement to be executed in case of
an input error.

Radio fhaek

177

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

Example 2

You may use an "implied DO loop" as a variable list item.
Its syntax is:

array name(subscript),integer variable=starting value,
ending value, increment

It follows the same rules as a DO loop, but the implied DO
loop lets an entire array be written on one record. For
example:

BYTE A(1l¢)
READ(6,10) (A(I),I=1,10)
10 FORMAT (10A2)

The computer reads a string in from LUN 6 and places it into
a byte array of 1§ elements. This is equivalent to:

READ(6,1¢) A(1),A(2),A(3),A(4),A(5),
A(6) ,A(7),A(8),A(9),A(10)

(For more information on implied DO loops, see Chapter 8.)
Example 3

READ(5,25)
25 FORMAT (1@HABCDEFGHIJ)

The next 1§ characters input from the keyboard replace the
'ABCDEFGHIJ' in FORMAT statement 25.

Example 4

READ(5,10)A,B
19 FORMAT(F4.2,F4.1)

Radie fhaek
178

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

The computer stops and awaits input. You may either type the
two values as one continuous line:

23.1b7.8

or separate them with commas:
23.1,7.8
Both set A equal to 23.1 and B equal to 7.8.

When using the continuous line, you must type some character
(even if it's a blank space) for every character in the
field.

The computer interprets the commas as the last character in
the field.

Radio fhaek
179

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

REAL Nonexecutable
Declaring a variable to be real Chapter 6

REAL variable(dimension),variable(dimension),...

Declares the listed variables to be real. If the variable
is an array name, the statement can also specify its size.

Examples

REAL ITEM,NUMBER
declares ITEM and NUMBER to be real variables.
REAL ITEM(10) ,NUMBER(2§,2¢)

declares ITEM and NUMBER to be real arrays.

Radio fhaek
189

MODEL 4 FORTRAN FORTRAN STATEMENTS
TRS-80°

RETURN Executable
Returning from a subroutine . Chapter 9
or function

RETURN

Represents the logical termination point of a subroutine or
function. The subroutine or function can contain any number
of RETURN statements but must have at least one.

Example

RETURN

Radio fhaek
181

MODEL 4 FORTRAN FORTRAN STATEMENTS
TRS-80°

REWIND Executable
Resetting the pointer in a file Chapter 8

REWIND logical unit number

Resets the pointer in a sequentially addressed file to the
first record. The computer closes the file and then
reopens it under the same specifications as before. The
logical unit number (LUN) must reference an already
opened, sequentially addressed data file.

Example
REWIND 6

closes the file associated with LUN 6 and then reopens it.

®
Radio fhaek
182

—

MODEL 4 FORTRAN FORTRAN STATEMENTS
TRS-80 °

STOP Executable
Termination of a program

STOP string

Signifies the logical end of the program. The optional
string after the STOP can be any six-character message.

Your screen displays STOP string after the computer
encounters the STOP. The STOP command is optional.

Example
STOP I/OERR

stops program execution and displays the message STOP
I/0ERR.

Radio fhaek
183

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

SUBROUTINE Nonexecutable
Defining a subroutine Chapter 9

SUBROUTINE subroutine name(local variable list)

Defines a subroutine subprogram unit and must be the first
statement of that unit. Up to six alphanumeric characters
constitute the subroutine name, the first of which must be
a letter. The local variable list is optional. If you

use them, the local variables must match in type and number
the variable list in the CALL statement of the main program.

Example
SUBROUTINE SUBl(X,Y,Z)

defines a subroutine named SUBl that uses the local
variables X, Y, and %Z.

Radio fhaek
184

MODEL 4 FORTRAN FORTRAN STATEMENTS
TRS-80 °

WRITE Executable
Outputting Chapter 8

WRITE(logical unit number,format statement label,
REC=record number,ERR=statement label)
variable list

Outputs data to the printer, screen, or diskette, depending
on the logical unit number. The format statement
associated with WRITE specifies the type of output. It is
optional. If you do not. specify the type of output, the
computer outputs unformatted data (only to the diskette).

The REC= option gives the integer record number of the
location to write the data (for direct access files). The
ERR= option specifies where to go in the program in case of
an output error, such as a hardware error.

The variable list is optional. If you use it, the
variables must match those in the corresponding FORMAT
statement. If you do not use it, the computer prints or
executes only what is in the FORMAT statement (literals,
Holleriths, carriage control commands, or blank spaces).

Example 1
WRITE(6,1¢,REC=1,ERR=20) A,B

instructs the computer to write to record number 2 of a disk
file (LUN 6) the variables ‘A and B, using the format given
in statement 1@. If an error occurs in the output, control
transfers to Statement 24.

Radio fhaek
185

MODEL 4 FORTRAN FORTRAN STATEMENTS

TRS-80 °

Example 2

DIMENSION A(1lf)

DO 1¢ I=1,1¢
WRITE (7,REC=I)A(I)
19 CONTINUE '

writes A(I) (unformatted) to record number I of a aisk file
(LUN 6).

Example 3

WRITE statements can use implied DO loops as variable lists.
(See READ.) '

DIMENSION A(1f#)

'WRITE (6,18) (A(I),I=1,10)
19 FORMAT (1¢0F6.1)

writes the elements of the array A to LUN 6, using format

1g0.

When using a implied DO loop in a WRITE statement, you
cannot use a complex expression as the index. For example:

WRITE(6,18)(A(I-5),I=1,10)

is invalid. (For more information on implied DO loops, see
Chapter 8.)

Example 4

WRITE (2,10)
19 FORMAT ('l',2¢X,'TABLE OF VALUES')

This program gives no variable list, and only what is in
format statement 1@, a carriage control command and a
literal, is sent to the printer.

Radio fhaek
186

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80 °

CHAPTER 11 / FORTRAN FUNCTIONS

A function is a built-in sequence of operations that

FORTRAN performs on data. A function is actually a
subroutine that returns data. The Compiler's functions save
you from writing a routine, and they operate faster than a
routine. :

A function consists of its name and the data you specify.
You must always enclose this data in parentheses, and, if
more than one data item is required, you must separate the
items with commas.

This chapter lists the syntax (format) to use in typing each
function. If the data required is termed integer number,
you may insert any integer expression that returns an
integer value. 1If it is termed real number, you may

insert any real expression. If is is termed double
precisign number, you may insert any double precision
expression.

Important Note: Whenever you use a double precision
number in a function, you must type it with the D
exponential notation. (For more information, see Chapter
6.)

The value returned depends on the function used. Generally,
all functions that are considered real variables return real
values, those considered integer variables return integer
values, and the functions beginning with the letter D return
double precision values. For example:

ABS returns a real value.
DABS returns a double precision value.
IABS returns an integer value.

Radie fhaek
187

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80°

Example
SQRT(A + 6.0)

computes the square root of A + 6.

Functions cannot stand alone in a FORTRAN program. You must
use them in the same way you use data. For example:

A = SQRT(7.4)

sets A equal to the square root of 7.4.

FORTRAN contains the following library functions:

ABS DCOS IFIX
AINT DEXP INP
ALOG DIM INT
ALOG1f DLOG ISIGN
AMAX(DLOG1Y MAXg
AMAX1 DMAX1 MAX1
AMINO DMINL MINg
AMINI DMOD MIN1
AMOD DSIGN MOD
ATAN DSIN PEEK
ATAN2 DSQRT SIGN
cos EXP SIN
DABS FLOAT SNGL
DATAN IABS SORT
DATAN?2 IDIM TANH
DBLE IDINT ~

This chapter contains a listing of all these library
functions, alphabetized by the "root" function name (the
name underlined in bold face).

For all functions the degrees are expressed in radians.

Radio Sfhaek
188

MODEL 4 FORTRAN FORTRAN FUNCTIONS

TRS-80 °

Creating a Function

You can also create your own function in the following way
by using this statement in your main program:

function name(local variable‘list) = expression

Example
ANSWER(A,B,C) = (A / B) - C

ANS = ANSWER(X,Y,2)

ANSWER is the function name. A, B, and C are the local
variables, and X, Y, and Z are the actual variables.

You must list this type of function in the main program
before making any reference to it.

Another way to create a function is by using the FUNCTION
statement to create a function subprogram. (See FUNCTION

Chapter 14.)

in

Radie Sfhaek

189

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80°

ABS,DABS,IABS
Absolute value

IABS{integer number)
ABS (real number)
DABS (double precision number)

Return the absolute value of the number. IABS returns an
integer, ABS returns a real number, and DABS returns a
double precision number.

Examples
R = -39.4
A = ABS(R)

sets A equal to 39.4.
DABS (-942144.8@343Dg)

w
Il

sets B equal to 942144.0@343.
J = IABS(-39)

sets J equal to 39.

Radie fhaek
199

MODEL 4 FORTRAN o FORTRAN FUNCTIONS
TRS-80

ATAN,DATAN
Arctangent

ATAN(real number)

Return the arctangent in radians of the number. ATAN
returns a real value between -pi/2 and pi/2 radians, and
DATAN returns double precision values between -pi/2 and pi/2
radians.
Examples

A = ATAN(1.09)
sets A equal to £.8284338.

D = DATAN(1.089Dg)

sets D equal to @.828433776420826.

Radie fhaek

191

MODEL 4 FORTRAN FORTRAN FUNCTIONS

TRS-80°

ATANZ2 ,DATAN2
Arctangent

ATAN2(real number-1l,real number-2)
DATAN2 (double precision-1l,double precision-2)

Return the arctangent in radians of the first number divided
by the second. ATAN2 returns real values between -pi/2 and
pi/2 radians, and DATAN2 returns double precision values
between -pi/2 and pi/2 radians.
Examples

A = ATAN2 (4.5,5.4)
sets A equal to #.7328151.

D = DATAN2 (4.5Df¢,5.9D#)

sets D equal to $.732815101786507.

Radio fhaek

192

Pl

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80 °

COS ,DCOSs
Cosine

COS(real number)
DCOS(double precision number)

Return the cosine of the angle used in the argument. You
must express the angle in radians, and it must be between #
and (pi). COS returns a real value, and DCOS returns a.
double precision value.
Examples

A = COS(l1l.9)
sets A equal to @.5403@23.

D = DCOS(1l.@ggggng)

sets D equal to @.540392395868144.

Radio fhaek -
193

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80 °

DBLE
Converting single precision to double precision

DBLE (real number)

Converts a real number to a double precision number by
considering the insignificant digits of the real number
significant.

Example
A = §.1322329
D = DBLE(A)

sets D equal to §.132232900000000.

Radio fhaek
194

MODEL 4 FORTRAN

FORTRAN FUNCTIONS

TRS-80°

DIM,IDIM
Positive difference

IDIM(integer~1l, integer-2)
DIM(real—-1l,real-2)

Return the difference of the first number and the minimum of

the two numbers. IDIM returns an integer.
real number. ’

Examples .

A = DIM(24.5,16.0)
sets A equal to 8.5.

A = DIM(1l6.04,24.5)
sets A equal to #.4.

I = IDIM(1f,20)
sets I equal to #.

I = IDIM(35,-2)

sets I equal to 37.

DIM returns a

Radio Shaek
195

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80 °

EXP,DEXP
Raising "e" to a power

EXP(real number)
DEXP(double precision number)

Return the value of "e" (approximately 2.71828) raised to

the power supplied by the argument. EXP returns a real
value, and DEXP returns a double precisioin value.

Examples
A=1.8
E = EXP(A)

sets E equal to 2.7183.

DEXP(1.00@@Dg)
sets D equal to 2.71828182845905.

(W)
i

Radio fhaek

196

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80 °

IFIX
Converts a real number to an integer

IFIX(real number)

Converts a real number to an integer (by truncation).
(This function is identical to INT.)

Example
J = 29.9
N = IFIX(J)

sets N equal to 29.
N = IFIX(-29.8)

sets N equal to -29.

Radio fhaek
197

MODEL 4 FORTRAN

FORTRAN FUNCTIONS

TRS-80 °

FLOAT
Converts an integer to a real number

FLOAT (integer)

Converts an integer to a real number.

Example
A = FLOAT(28)

sets A equal to 20.90000.

Rad:ie fhaek
198 '

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80 °

INP
Inputting data from port.

INP(port)

Returns the value from the port. The value is a byte.

Example
BYTE A
A = INP(10)

sets A equal to the value in port 14.

Radio Sfhaek
199

MODEL 4 FORTRAN o FORTRAN FUNCTIONS
TRS-80

AINT,INT,IDINT
Truncation of a real or double precision number

IDINT(double precision number)
AINT(real number)
INT(real number)

Truncate the decimal portion of the number. INT and IDINT
return integers, and AINT returns a real number. (INT is
identical to IFIX.)

Note: For INT and IDINT, the number must be small enough
in magnitude to fit in an integer type variable (-32768 to
32767).

Examples
A = AINT(34.33)

sets A equal to 34.9000¢.

-19.63
INT(C)

C
I

o

sets I equal to -19.
J = IDINT(31994.6223D§)

sets J equal to 31994.

Radie fhaek
200

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80 °

ALOG, DLOG
Natural logarithm

ALOG(real number)
DLOG(double precision number)

Return the natural logarithm of the argument. ALOG returns
a real value, and DLOG returns a double precision number.
Example

A = ALOG(45£99.93)
sets A equal to 1¢.7166.

D = DLOG(45099.93Dg)

sets D equal to 19.7166359733831.

Radio fhaek

201

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80 °

ALOG1f#,DLOG1f
Common logarithm

ALOGld (real number)
DLOGlf@ (double precision number)

Return the common (base 1¢) logarithm of the number given in
the function. (Because of the nature of logarithms, the
number in the function must be positive.) ALOGlf returns a
real number, and DLOGl@ returns a double precision number.
Example

A = ALOG1@(45099.93)
sets A equal to 4.654176.

D = DLOG1@(45099.93Dg)

sets D equal to 4.65417586780618.

Radio fhaek

202

MODEL 4 FORTRAN

FORTRAN FUNCTIONS

TRS-80 ©

AMAXﬂ,AMAXﬁ,MAXl,DMAXl
Find the maximum in a list

MAX@ (integer list)

MAX1l(real list)

AMAX@ (integer list)

AMAXl (real list)

DMAX1 (double precision list)

Find the maximum value in a list of items.

MAX@ finds the

maximum value in an integer list and returns integer values.
MAX1 returns integer values from a list of real numbers.

AMAXf takes an integer list, finds the maximum value, and
returns a real number. AMAX]l returns a real value from a

list of real numbers.

DMAX]1 returns the maximum double precision values from a

list of double precision numbers.
Examples

A = AMAXf@ (-34,59,10)
sets A equal to 59.9gpggg.

A = AMAX1(99.4,20.3,9.9)
sets A equal to‘99.4ﬁﬁﬂﬂ.

N = MAX@(25,-10,30)

sets N equal to 30.

Radio fhaek
293

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80 °

N = MAX1(12.5,1¢.4,131.3,1.3)
sets N equal to 131.

D = DMAX1(13.2232D@,19¢.3211D@,-1.082311DM)
sets D equal to 10@.321100000009.

Radie Shaek
204

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80 °

AMINQ,AMINI,DMINl,MINﬁ,MINl
Find the minimum in a list

MIN@ (integer list)

MINl (real list)

AMIN@ (integer list)

AMINl (real 1list)

DMIN1 (double precision list)

Return the minimum value of a list of numbers. MINg and
MIN1 return integer valdes, AMINg and AMINl return real
values, and DMINl returns double precision values.

Examples

A = AMIN@(-34,59,10)

sets A equal to -34.40000.
A = AMIN1(99.4,20.3,9.8)
sets A equal to 9.90994.
N = MIN@(25,-14,30)
sets N equal to -14.
N = MIN1(12.5,10.0,131.3,-1.3)
sets N equal to -1.
D = DMIN1(13.2232D¢,1¢0.3211D¢,-1.992311Dg%)
sets D equal to -1.0@231100000007,

Radioe fhaek
205

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80°

AMOD , DMOD , MOD
Arithmetic remainder

MOD(integer dividend, integer divisor)
AMOD (real dividend,real divisor)
DMOD (double precision dividend,double precision divisor)

Return the remainder left after the division of the dividend
by the divisor. MOD returns an integer, AMOD returns a real
number, and DMOD returns a double precision number.
Examples
RMAIN = AMOD(13.6,2.4)
sets RMAIN equal to 1.600000.
IMAIN = MOD(25,2)
sets IMAIN equal to 1.
DMAIN = DMOD(1024.0@39Dg,2.00@D@)
sets DMAIN equal to £.083899999894202.

Radio Sfhaek
206

MODEL 4 FORTRAN FORTRAN FUNCTIONS

TRS-80 °

PEEK
"Peeking"” at a memory location

PEEK(integer)

Returns the value stored at the memory location given by the
integer. The value is a number in the range -127 to 128.

Example
A = PEEK(32000)

sets A equal to the value stored at memory location 329@¢
(hexadecimal 7Dgg). :

Radioe fhaek
207

MODEL 4 FORTRAN FORTRAN FUNCTIONS

TRS-80 °

DSIGN,ISIGN,SIGN
Transfer signs

ISIGN(integer-1,integer-2)
SIGN(real-1l,real-2)
DSIGN(double precision-1,double precision-2)

Transfer the sign of the second number to the first number
(that is, the magnitude of the first times the sign of the
second). ISIGN returns an integer, SIGN returns a real
number, and DSIGN returns a double precision number.
Examples

N = ISIGN(-292,14)
sets N equal to 292.

A = SIGN(-10.3,-59.2)
sets A equal to -10.3000.

D = DSIGN(F.14423332D4,-#.12133Df)

sets D equal to -.144233320000000.

Radio fhaek

208

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80 °

DSIN,SIN
Sine of an angle

SIN(real number)
DSIN(double precision number)

Return the sine of the angle given in the argument. You
must give the angle in radians, and it must be between @ and
pi. SIN returns a real number, and DSIN returns a double
precision number.

Examples
B = g.55
A = SIN(.55)

sets A equal to §.5226871.
D = DSIN (.55000Dg)

sets D equal to £.522687220939659.

Radio fhaek
2009

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80 °

SNGL
Converting double precision to single precision

SNGL(double precision number)

Converts a double precision number to a real number by
saving the most significant digits.

Example
A = SNGL(.14329404874204Dg)

sets A equal to .1432941, but only the first seven digits
are considered significant.

Radie fhaek
21g

MODEL 4 FORTRAN FORTRAN FUNCTIONS
TRS-80 °

DSQRT, SQRT
Square root

SQORT(real number)
DSQRT(double precision number)

Return the square root of the number. (The number must be
positive.) SQRT returns a real number value, and DSQRT
returns a double precision number.

Examples
A = SQRT(81.4)

sets A equal to 9.9000090.

DNUM = (25.80023113D§)
D = DSQRT (DNUM)

sets D equal to 5.0@@@231129466.

Radie fhaek
211

MODEL 4 FORTRAN FORTRAN FUNCTIONS

TRS-80 °

TANH
Hyperbolic Tangent

TANH(real number)

Returns the real number value of the hyperbolic tangent of
the angle given in the argument. You must express the angle
in radians, and it must be between -(pi)/2 and (pi)/2.

Example
A = TANH(1l.0)

sets A equal to @.7616.

Radio fhaek

212

Section 1l

Error
Messages

TRS-80 °

Part 3

ERROR MESSAGES

Radie fhaek

MODEL 4 FORTRAN ERROR MESSAGES
TRS-80°

A/ TRSDOS ERRORS

Important Note: Since your operating system is TRSDOS,

some of the errors you encounter while running the FORTRAN
package may be TRSDOS errors. TRSDOS 6 displays the message
and not the number of the error.

TRSDOS Error Codes/Messages

Decimal Hex Message
g X'gg’ No error
1 X'gl’ Parity error during header read
2 X'gae Seek error during read
3 X'g3! Lost data during read
4 X'gar Parity error during read
5 X'g5! Data record not found during read
6 X'ge' Attempted to read system data record
7 X'g7!’ Attempted to read locked/deleted data record
8 X'@g8’ Device not available
9 X'go9r Parity error during header write
19 Xtgar Seek error during write
11 X'gB' Lost data during write
12 X'gc! Parity error during write
13 X'gp! Data record not found during write
14 X'gE' Write fault on disk drive
15 X'gF! Write protected disk
16 X'1g° Illegal logical file number
17 X'11! Directory read error
18 X'12' Directory write error
19 X'13" Illegal file name
20 X'14’ GAT read error
21 X'15" GAT write error
22 X'le' HIT read error
23 X'17' HIT write error
24 X'18' File not in directory
25 X'19°' File access denied
26 X'1A' Full or write protected disk
27 X'1B' Disk space full
28 X'1cC' End of file encountered
®
Radioe fhaek

215

MODEL 4 FORTRAN

ERROR MESSAGES

TRS-80 °

29 X'lp'
30 X'1E!
31 X'1F'
32 Xr2g°
33 X'21e
34 X'22'
37 X'25"
38 X'26°
39 X227
a9 X'28’
41 X'29'
42 X'2A!
43 X'2B'
63 X'3F!

Record number out of range
Directory full - can't extend file
Program not found

Illegal drive number

No device space available

Load file format error

Illegal access attempted to protected file
File not open

Device in use

Protected system device

File already open

LRL open fault

SVC parameter error

Extended error

Unknown error code

Radio Shaek

216

MODEL 4 FORTRAN ERROR MESSAGES

TRS-80 °

B/ COMPILER (F8@) ERROR MESSAGES

The two kinds of Compiler error messages are runtime and
Compiler. Compiler errors occur when the program is being
compiled; runtime errors occur when you execute the program.

Compiler Errors

Your FORTRAN Compiler detects two kinds of errors: Warnings
and Fatal Errors.

When you receive a Warning Error, compilation continues with
the next item on the source line. (Remember, your computer
cannot directly process source lines. You must compile them
into an object program consisting of instructions in a
machine language that your computer can understand.)

Example
$LINE 16: Missing Integer Variable

When a Fatal Error occurs, the Compiler ignores the rest of
the statement line, including any of the statement line's
continuation lines. ‘

Examples
?LINE: 3 Statement Is Out Of Sequence: Format'
?1 Fatal Error(s) Detected
(or)

?LINE: 3 Premature End Of File On Input Device:
?1 Fatal Error(s) Detected

Percent signs (%) precede Warning Errors; question marks (?)
precede Fatal Errors. Your Compiler displays the physical
line number next and then the error code or error message.

Radie fhaek
217

MODEL 4 FORTRAN ERROR MESSAGES

TRS-80 °

FATAL ERRORS

Note: Words capitalized in the following error messages
are reserved words in FORTRAN and have special significance
to your Compiler.

Fatal Compiler Errors (in alphabetical order)

MESSAGES

Backwards DO reference
Consecutive Operators

Data Pool Overflow

Function Call wilth No Parameters
Identifier Too Long

Illegal Character for Syntax
Illegal Data Constant

Illegal DO Nesting

Illegal Hollerith Constsruction
Illegal Integer Quanity

Illegal Item Following INTEGER or REAL or LOGICAL
Illegal Logical Form Operator
Illegal Mixed Mode Operation
Illegal Operator

Illegal Procedure Name

Illegal Statement Completion
Illegal Statement Following Logical IF
Illegal Statement Function Name
Illegal Statement Number

Improper Subscript Syntax
Incorrect Integer Constant
Incorrect Number of DATA Constants
Invalid DATA Constant or Repeat Factor
Invalid Data List Element in I/0
Invalid Logical Operator

Invalid Statement Number

‘Literal String Too Large
Mismatched Parentheses

Missing Integer Quantity

Missing Name

Not a Variable Name

Radie Shaek
218

MODEL 4 FORTRAN

ERROR MESSAGES

TRS-80 °

Premature End of File on Input Device

Stack Overflow

Statement Out of Sequence

Statement Unrecognizable or Misspelled
Unbalanced DO Nest

Compiler Nonfatal Errors

Array Multiple EQUIVALENCEd within a Group
Array Name Expected

Array Name Misuse

Block Name = Procedure Name

Code Output in BLOCK DATA

COMMON Base Lowered

COMMON Name Usage

Division by Zero

Duplicte Statement Label

Empty List for Unformatted WRITE
Format Nest Too Deep

Function with no Parameter

Hex Constant Overflow

Illegal Argument to ENCODE/DECODE
Illegal DO Termination

Invalid Operand Usage

Invalid Statement Number Usage
Missing DO Termination

Missing Integer Variable

Missing Statement Number on FORMAT
Mixing of Operand Modes Not Allowed
Multiple EQUIVALENCE of COMMON

No Path to this Statement

Non-COMMON Variable in BLOCK DATA
Non-Integer Expression

Operand Mode Not Compatible with Operation
RETURN in a Main Program ‘
Statement Number Not FORMAT Associated
STATUS Error on READ

Undefined Labels Have Occurred

Wrong Number of Subscripts

Zero Format Factor

Zero Repeat Factor

Radio fhaek

219

MODEL 4 FORTRAN ERROR MESSAGES

TRS-80 °

Compiler Runtime Error Messages

When you execute your FORTRAN program, you may receive
Runtime Warning Errors and Runtime Fatal Errors. After a
maximum of 2@ Runtime Warning Errors, execution ceases;
before this, execution continues after the warning. A
Runtime Fatal Error causes execution to cease. Runtime
errors are in two-character code and enclosed with
asterisks:

* kP Kk

RUNTIME WARNING ERRORS

A2 Both Arguments of ATAN2 are §

BE Binary Exponent Overflow

BI Buffer Size Exceeded During Binary I/0

CN Conversion Overflow

DE Decimal Exponent Overflow (Number in input
stream had an exponent larger than 99)

IB Input Buffer Limit Exceeded

IN Input Record Too Long

I0 Illegal I/0 Operation

IS Integer Size Too Long

OB Output Buffer Limit Exceeded

ov Arithmetic Overflow

RC Negative Repeat Count in FORMAT

SN Argument to SIN Too Large

TL Too Many Left Parentheses in FORMAT

RUNTIME FATAL ERRORS

DT Date Type Does Not Agree With FORMAT
Specification ‘
DZ Division by Zero, REAL or INTEGER
EF EOF Encountered on READ
FO FORMAT Field Width is Zero
FW FORMAT Field Width is Too Small
ID Illegal FORMAT Descriptor
IT I/0 Transmission Error
®
Radie Sfhaek

229

MODEL 4 FORTRAN ERROR MESSAGES

TRS-80 °

LG

ML
MP

SQ

Illegal Argument to LOG Function (Negative or
Zero

Missing Left Parenthesis in FORMAT

Missing Period in FORMAT

Illegal Argument to SQRT Function (Negative)

Radie fhaek

221

MODEL 4 FORTRAN ERROR MESSAGES
TRS-80 °

C/ EDITOR (ALEDIT) ERROR MESSAGES

BAD FILE FORMAT

The file is not a type ALEDIT can load, either fixed LRL 1 or
Variable, and with record length not greater than 256 bytes.

BAD FILENAME FORMAT

The filename is too long or incorrectly formatted on a load or a
write command.

BAD PARAMETERS

The ASCII line number converted to hexadecimal is greater than
65535 decimal (for line number request).

The change string is zero or the length of the line to be
changed is zero (for Change command).

BUFFER FULL

The edit buffer has no more room. Program returns from any mode
to Command Mode. Note: The edit buffer is about 4K smaller
if po, HOST, COMM, SPOOL, DEBUG, or ALBUG are on.

LINE LENGTH TOO LONG, TRUNCATING LINE

You are loading a file that has lines longer than 78 characters.

LINE NUMBER TOO LARGE

The line number is larger than the last line number in the file.
The editor does not recognize your command. Retype it.

NO TEXT

The edit buffer is empty. The only commands that are effective
are: K, L, ¥, I, Q, J, S.

Radio Sfhaek
222

MODEL 4 FORTRAN ERROR MESSAGES

TRS-80 °

OCCURRENCE TOO LARGE

In the Find and Change commands the occurrence is greater than
255'

SEARCH ARG TOO LONG

The string you want to search for is longer than 37 characters.

SYNTAX ERROR

The command is improperly specified.

TOTAL LINE LENGTH TOO LONG

The new line created by a Change command is greater than the
acceptable Line Length.

If the Editor returns an error code, it is a TRSDOS error
message. You can identify it by simply typing in the error
number. For example, at TRSDOS Ready, type:

ERROR 19 <ENTER>

or at the Editor Command Mode, type:

S ERROR 19 <ENTER>

and your computer answers you with the correct identification:

INVALID FILE NAME

You can do this any time your computer identifies an error of
which you are not aware.

HIT ANY KEY TO CONTINUE

If there is an error in the load or write routines, the Editor
waits for the user to read the entire error message.

Radie fhaek
223

MODEL 4 FORTRAN ERROR MESSAGES

TRS-80 °

D/ LINKER (L8f) ERROR MESSAGES

Your Linker has the following error messages:

Origin _ Above ~ Loader Memory, Move Anyway (Y or N

)
Origin Below Loader Memory, Move Anwyay (Y or N)

?
?

When you enter a -E or -G switch and you receive this error,
either the data or program area has an origin or top that
lies outside loader memory (that is, loader origin to top of
memory). If you type Y <ENTER>, the Linker moves the area
and continues. If you enter anything else, the Linker
exits. 1In either case, if you enter a -N, the image will
already have been saved.

tMult. Def. Global YYYYYY

This error occurs when more than one definition for the
global (internal) symbol YYYYYY is encountered during the
loading process. Attempting to link two main programs may
cause this error. (Use the R switch to reset the Linker
before linking another main program.) Using a variable name
that is the same as a global symbol name also causes this
error.

Note: If you link a program that does not have either a
READ or WRITE statement, the Linker gives you "undefined
global(s)" errors. Ignore this message. It has no effect
on the execution of your program.

Data (Public = <symbol name> (XXxX)
External = <symbol name> (XXXX)

%0Overlaying Program Area ,Start = XXX

A -D or -P switch destroys data you have already loaded.

Radio fhaek
224

MODEL 4 FORTRAN ERROR MESSAGES

TRS-80°

$2nd COMMON Larger /XXXXXX/

This error occurs if the first definition of COMMON block
/XXXXXX/ is not the largest definition. Reorder module
loading sequence or change COMMON block definitions.

?Can't Save Object File

A disk error occurs when you are saving the file.

?Command Error

This error occurs when a Linker command is unrecognizable.

?<file> Not Found

This error occurs when a filename you give in a command
string does not exist.

?2Intersecting Program Area
Data

This error occurs when your program and data area intersect
and an address or external chain entry is in this
intersection. The final value cannot be converted to a
current value since it is in the area intersection.

?Loading Error

This error occurs when the last file given for input is not
a properly formatted Linker object file.

20ut of Memory

This error occurs if there is not enough memory to load
the program.

Radie fhaek
225

MODEL 4 FORTRAN o ERROR MESSAGES
TRS-80

?S5tart Symbol - <name> - Undefined

This error occurs if after you enter a -E: switch the
symbol specified is not defined.

Radie fhaek

226

Section IV

Quick
Reference

TRS-80°

Part 4

QUICK REFERENCE

Radie Shaek

MODEL 4 FORTRAN QUICK REFERENCE
TRS-80 °

A/EDITOR
Description of Terms

current line

line where the cursor is currently positioned.

del (delimiter)

one of the following characters which marks the beginning and

ending of a string:
" # 8 %8& ' () *4+ , -,/ :;:<=>7?

string

one to thirty-seven ASCII characters.

text

source program or text currently in RAM.

Command Mode

Command Descfiption

#line , Moves thé cﬁfsor ﬁéyépécific iiné'number‘and
moves that line to the top of the screen.

. (period) Displays the curreht line sequence number.

<up arrow> Moves the curéor up one line.

Radio Sfhaek

229

MODEL 4 FORTRAN

QUICK REFERENCE

TRS-80°

<down arrow>

<left arrow>

<right arrow>
1

2

3

A <ENTER>

B

<BREAK>

Moves the cursor down one line.

Moves the cursor one character to the left.
Moves the cursor one character to the right.
Marks the begining of a block.

Marks the last line of a block.

Cancels block markers.

Reexecutes the last (C, F, X, L, W) executed
command .

Moves the cursor to the bottom of the text.

Cancels any command and returns to Command
Mode.

C del stringl del string2 del occurrence <ENTER>

<CTRL> A

<CTRL> B

E

Changes stringl to string 2 for a
specified number of occurrences.

Moves the cursor to the top of the screen.

Moves the cursor to the bottom of the screen
(or to the line after the last line of text).

Deletes the current line or.marked block of
lines (you need not press <ENTER>).

Enters Line Edit Mode.

F del string del occurrence\<ENTER>

G <ENTER>

Finds the specified occurrence of string.
If you omit occurrence, it finds the first

occurrence.

Deletes all text from the current line to the
end. '

Rad:ie fhaek

239

MODEL 4 FORTRAN QUICK REFERENCE

TRS-80 °
H <ENTER> Prints the entire text if entered as the
first command or the specified block on the
printer.
I | Enters Insert Mode.
J Displays the current size of text and

remaining memory.

K , Deletes all text.

L filespec $C Loads a new file into the Editor. $C is
optional.

M Moves a marked block ahead of the current
line.

N Updates the display.

0 Copies a block of text.

P Moves the cursor to the next page (a page is
24 lines).

Q <ENTER> Quits (exits) the Editor

R <ENTER> Deletes the current line and enters Insert
Mode.

<SHIFT> <up arrow> Cancels the current command line if you have
not yet pressed <ENTER>.

T Moves the cursor to the top of text.
U Moves the cursor to the previous page (a page
is 24 lines). :
\ Scrolls the current line to the top of the
screen.
®
Radie fhaek

231

MODEL 4 FORTRAN

QUICK REFERENCE

TRS-80 °

W filespec $option.

. « <ENTER>

Saves a program on disk. $E exits the Editor
after saving the file. $M saves the file as
a fixed length record file with an LRL of
256. '

X del stringl del string2 del occurrence

Line Edit Mode

Command
<left arrow>

<right arrow>
A

E

<ENTER>

H string

I string

Changes stringl to string 2 for the
number of occurrences you specify but
prompts before making the change.

Description
Moves cursor one position to the left.

Moves cursor to the next tab position while
in I, X, or H subcommands.

Clears all changes and reenters Edit Mode for
the current line.

Exits Edit Mode and stores changes.
Identical to the E subcommand.

Deletes remaining characters, enters Insert
Mode, and lets you insert a string.

Lets you insert at the current position of -
the cursor on the line. <left arrow> deletes
characters from the line.

Moves the cursor to the beginning of the
line.

Radio fhaek

232

MODEL 4 FORTRAN QUICK REFERENCE
TRS-80 °

n C string Changes next n characters in the specified

string. If you omit n, only one
character is changed. <SHIFT> <up arrow>

exits change early.

n D Deletes n characters. If you omit n,
only one character is deleted.

n K character Kills all characters preceding the nth
occurrence of the character. If you omit
n, the first occurrence is used. If no
match is found, the remainder of the line
is killed.

n S character Positions the cursor at the nth occurrence
of character.

Q Quits Edit Mode and cancels all changes.

<SHIFT> <up arrow> Returns to Edit Command Mode from the I, X,
C, or H subcommands.

<SPACEBAR> Moves the cursor one position to the right.

X string Moves the cursor to the end of the line,
enters Insert Mode, and lets you insert a
string.

Insert Mode
Command Description

I ‘ Places the Editor in Insert Mode and lets you
enter program text.

<BREAK> Exits Insert Mode and returns you to the
ALEDIT Command Mode.

Radie Sfhaek
233

MODEL 4 FORTRAN QUICK REFERENCE
TRS-80 °

B/ COMPILER

Your commands tell the Compiler the name of the source file
you want to compile and what options you want to use. Here
is the format for a Compiler command:

Object filename, listing, filename=source filename-switch
object filename -- This is the name you give your
object file. It is optional. To create a relocatable
object file, you must include this part of the
command. The default extension for the object
filename is /REL.
listing filename -- This is the name you give the
listing file. It is optional. The default extension
for the listing file is /LST.
source filename -- This is the name of a FORTRAN
program you saved on diskette. The default
- extension for a FORTRAN source filename is /FOR. 1In
a Compiler command you must always precede the
source filename with an equal sign.
switches -- This is the way you want the file command.
It is optional.

Switches

Switch Action

-0 Prints all listing addresses in octal.

-H Prints all listing addresses in hexadecimal
(default).

-N Does not list the object code that is

generated in the listing file. Lists only the
. FORTRAN source code. ’
-P Each -P allocates an extra 1f@ bytes of stack
space for use during compilation. Use -P if
stack overflow errors occur during the
compilation. Otherwise, you do not need this
switch. :

Radio fhaek
234

MODEL 4 FORTRAN QUICK REFERENCE

TRS-80 °
-M Specifies to the Compiler that the generated
code should be in a form that can be loaded

into ROMs.

Example

SAMPLE, SAMPLE=SAMPLE-P

Radio fhaek

235

MODEL 4 FORTRAN o QUICK REFERENCE
TRS-80

C/ LINKER
Syntax

command filename-N, object filename-switches

command filename-N -- creates a TRSDOS command file.
This is optional. If you use it, you must also
use the -E. The default extension is /CMD.

object filename -- This is one or more relocatable
object file that needs to be input. If you omit it,
the Linker uses the previously loaded object file. The
default extension is /REL.

switches -- Specify what action the Linker takes with
the object file. If you omit switches, the Linker
uses the -U switch.

Switches
The Linker switches are:

-R resets

~P or -D specify program and data area

-N saves command file

~U lists origin and end of program; undefined globals

-M lists origin and end; defined and undefined
globals

-E exits the Linker to TRSDOS

-S searches line for globals.

Example

EXAMPLE-N, EXAMPLE-E

Radio Shaek
236

MODEL 4 FORTRAN QUICK REFERENCE

TRS-80 °

D/ FORTRAN STATEMENTS AND FUNCTIONS

ABS(real number)
Returns absolute value of a real number.

AINT(real number)
Truncates a real number.

ALOG(real number)
Returns the natural logarithm of the argument.

ALOGlf (real number)
Returns the common logarithm of the real number.

AMAX@ (integer list)
Finds the maximum in a list.

AMAX] (real list)
F'nds the maximum in a list.

AMIN@ (integer list)
1o “he minimum in a list.

AMINl (real list)
F‘nds the minimum in a list.

AMOD(real dividend,real divisor)
Returns the arithmetic remainder.

ASSIGNinteger constant TO integer variable
Sets values for ASSIGNed GO TOs.

ATAN(real number)

Returns the arctangent in radians of a real number.

ATAN2 (real number-l,real number -2)
Returns the arctangent in radians of the quantity of
the first number divided by the second.

Radio fhaek
237

MODEL 4 FORTRAN QUICK REFERENCE

TRS-80°

BLOCK DATA subprogram name
Titles BLOCK DATA subprograms.

BYTE vqriable(gimensigg)Vlisg
Declares a byte variable.

CALL subroutine name (variable list)
Accesses a subroutine.

CALL OPEN(logical unit number,'filename',
record length)
Opens a disk file.

CALL OUT(logical unit number,byte)
Directs output to the I/0 ports.

CALL POKE(integer,byte)
"Pokes" a value into memory.

COMMON variable list

or

COMMON /block area name/variable list . . .
Declares COMMON location.

CONTINUE
A "No-operation" executable statement.

COS(real ‘number)
R-~+nrns the cosine of the angle in radlans used in the

argument.

DABS (double precision number) :
Returns the absolute value for a double prec1510n
number. ;

DATA varlable llst/data list/variable llst/data

llst/o o e
Initializes variables.

DATAN(double precision number)
Returns the arctangent in radians of a double precision
number in radians.

Radie fhaek

238

MODEL 4 FORTRAN QUICK REFERENCE

TRS-80 °

DATAN2 (double precision-l,double precision-2)
Returns the arctangent in radians (double precision) of
the quantity of the first number divided by the second
in radians.

DBLE(real number)
Converts a single precision number to double precision.

DCOS(double precision number)
Returns the cosine of the angle in radians used in the

argument.

DECODE(array name,format statement label)

variable list
Changes "internal format.

DEXP(double precision number)
Raises "e" to a power.

DIM(real-l,real-2)
Returns the positive difference.

DIMENSION array name (dimension),array name(dimenéions)
Dimensions a variable.

DLOG(double precision number)
Returns the natural logarithm of the argument.

DLOGlf (double precision number) ‘
Returns the common logarithm of a double precision
number.

DMAX1 (double precision list)
Finds the maximum in a 1list.

DMIN1 (double precision list)
Finds the minimum in a list.

DMOD(double precision dividend,double precision d1v1sor)
Returns an arithmetic remainder.

Radio fhaek
239

MODEL 4 FORTRAN QUICK REFERENCE

TRS-80 °

DO statement label integer variable=starting value,
ending value,increment
Looping.

DOUBLE PRECISION variable(dimensions),
variable(dimensions). . .
Declares a variable to be double precision.

DSIGN(double precision-1l,double precision-2)
Transfers sign.

DSIN(double precision number)
Returns the sine of an angle.

DSQRT (double precision number)
Returns a square root.

ENCODE(array name,format statement label)variable list
Changes internal format.

END
Terminates the program.

Closes a file.

EQUIVALENCE (variable list), (variable list),...
Declares equivalent memory locations.

EXP (real number)
Raises "e" to a power.

EXTERNAL subprogram name list
Uses functions inside functions.

FLOAT(integer)
Converts an integer to a real number.

label FORMAT(specificaion list)
Formats input/output to the specification list.

Radio Sfhaek
2448

MODEL 4 FORTRAN QUICK REFERENCE

TRS-80 °

FUNCTION function name(variable list)
Defines a function.

GO TO statement label
Unconditional GO TOs.

GO TO (statement label list), integer variable
Computed GO TOs.

GO TO integer variable,(statement label list)
Assigned GO TOs.

IABS(integer number)
Returns the absolute value for an integer number.

IDIM(integer-l,integEEZZ)
Returns the positive difference (integer).

IDINT(double precision number)
Truncates a double precision number.

IF (expression) label-1l,label-2,label-3
Arithmetic IF.

IF (logical expression) executable statement
Logical IF.

IFIX(real number)
Converts a real number to an integer.

IMPLICIT type(range),type(range)...
Declares a range of default variable types.

INCLUDE filename
Brings in outside programs.

INP(logical unit number)
Inputs a value from the I/0 ports.

INT(real number)
Truncates a real number.

Radie fhaek

241

MODEL 4 FORTRAN QUICK REFERENCE

TRS-80°

INTEGER variable(dimensions),variable(dimensions),...
Declares a variable to be an integer.

INTEGER*4 variable(dimensions),variable(dimensions),...
Declares a variable to be an extended integer.

ISIGN(integer-l,integer-2)
Transfers signs.

LOGICAL variable(dimensions),variable(dimensions),...
Declares variables to be logical.

MAX@(integer list)
Finds the maximum in an integer list.

MAX]l(real list)
Finds the maximum in a real number list.

MINg(integer list)

Finds the minimum in an integer list.

MINl(real list)
Finds the minimum in a real number list.

MOD(integer dividend,integer divisor)
Returns the arithmetic remainder.

OPEN
See CALL OPEN.

ouT
See CALL OUT.

PAUSE string
Pauses in the middle of a program.

- PEEK (integer)
"Peeks" at a memory location.

POKE
See CALL POKE.

Radie fhaek
242

MODEL 4 FORTRAN QUICK REFERENCE

TRS-80°

PROGRAM name
Names a program.

RAN(real number)
Returns a random real number.

READ(logical unit number,format statement label,
REC=record number,END=statement label,
ERR=statement label)variable list
Reads in a record.

REAL variable(dimensions),variable(dimension),...
Declares a variable to be real.

RETURN
Returns from a subroutine or function.

REWIND logical unit number
Resets the pointer in a file.

SIGN(real-l,real-2)
Transfers signs.

SIN(real number)
Returns the sine of an angle.

SNGL(double precision number)
Converts double precision to single precision.

SQORT (double precision number)
Returns a square root.

STOP string

Terminates a program.

SUBROUTINE subroutine name(local variable list)
Defines a subroutine.

Radie fhaek
243

MODEL 4 FORTRAN QUICK REFERENCE

TRS-80°

TANH(real number)
Returns the tangent.

WRITE(logical unit number,format statement label,
REC=record number,ERR=statement label)variable list
Outputs data to printer, screen, or diskette.

Radio fhaek
244

Section V

Appendices

TRS-80°

APPENDICES

Radie fhaek

MODEL 4 FORTRAN APPENDICES

TRS-80 °

A/ Language Extensions and Restrictions

The FORTRAN language includes the following exten51ons to
ANSI Standard FORTRAN (X3.9-1966).

l‘

2.

3.

4.
5.

6.

7.

8.
9.

If you use c in a 'STOP c¢' or 'PAUSE c' statement,
may be any six ASCII characters.

You may specify Error and End-of-File branches in
READ and WRITE statements using the ERR= and END=
options (although END is not used in WRITE).

The standard subprograms PEEK, POKE, INP, and OUT
have been added to the FORTRAN library.

Statement functions may used subscripted variables.
You may use hexadecimal constants wherever Integer
constants are normally allowed.

You may use the literal form of Hollerith data
(character string between apostrophe characters --
single quotes) in place of the standard nH form.
You may use Holleriths and Literals in expressions
in place of Integer constants.

The number of continuation lines is not restricted.
You may use mixed mode expressions and assignments.
Conversions are done automatically.

FORTRAN-8f places the following restrictions on Standard

FORTRAN.

1.

2.

C

The COMPLEX data type is not implemented. It may be

included in a future release.
The specification statements must appear in the
following order:

A. PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA
B. Type, EXTERNAL, DIMENSION

C. COMMON

D. EQUIVALENCE

E. DATA

F. Statement Functions

A different amount of computer memory is allocated
for each data type: Integer, Real, Double
Precision, Logical.

Radie fhaek

247

MODEL 4 FORTRAN APPENDICES

TRS-80 °

4. The equal sign of a replacement statement and the
first comma of a DO statement must appear on the
initial statement line.

Descriptions of these language extensions and restrictions

are included at the appropriate points in the text of this
manual.

Radie fhaek

248

MODEL 4 FORTRAN APPENDICES

TRS-80 °

B/ I1/0 Interface

Input/Output operations are table-dispatched to the driver
routine for the proper Logical Unit Number.

SLUNTB is the dispatch table. It contains one two-byte
driver address for each possible LUN. It also has a
one-byte entry at the beginning, which contains the maximum
LUN plus one.

The initial runtime package provides for 1§ LUN's (1-2§),
all of which correspond to the TTY. You may redefine any of
these or add more by changing the appropriate entries in
SLUNTB and adding more drivers. The runtime system uses
LUN3 for errors and other user communication. Therefore,
LUN3 should correspond to the operator console. The

initial structure of $LUNTB is shown in the listings
following this appendix.

The device drivers also contain local disptach tables. Note
that $LUNTB contains one address for each device, yet there
are really seven possible operations per device:

(1) Formatted Read
(2) Formatted Write
(3) Binary Read
(4) Binary Write

(5) Rewind
(6) Backspace
(7) Endfile

Each device driver contains up to seven routines. The
starting address of each routine is placed at the beginning
of the driver, in the exact order listed above. The entry
in SLUNTB is then pointed to this local table, and the
runtime system indexes into it to get the address of the
appropriate routine to handle the requested I/0 operation.

The following conventions apply to the individual I/O
routines:

Radio fhaek

249

MODEL 4 FORTRAN APPENDICES

TRS-80 °

3.
4.

Location $BF contains the data buffer address for
READs and WRITEs.

For a WRITE, the number of bytes to write is in
location $BL. :

For$a READ, the number of bytes should be returned
in $BL.

All I/O operations set the condition codes before
exit to indicate an error condition, end-of-file
condition, or normal return:

a) C¥=1, Z=don't care -- I/0 error
b) CY¥=f, Z=f -- end-of-file encountered
c) C¥=f,Z=1 -- normal return

The runtime system checks the condition codes
after calling the driver. If they indicate an
abnormal condition, control passes to the

label specified by "ERR=" or "END=" or, if no
label is specified, a Fatal Error results.
$IOERR is a global routine that prints an
"ILLEGAL I/O OPERATION" message (nonfatal). You
may use this routine if some operations are not
allowed on a particular device (for example,
Binary I/0 on a TTY).

Radio fhaek
259

MODEL 4 FORTRAN APPENDICES

TRS-80 °
MACS# 1.0 PAGE 1
gg%gg : TTY I/0 DRIVER
0000 00300 EXT IOERR, $BL, $BF, SERR, STTYIN , STTYOT
g g e pn, B2 O AR
0008 @013 00603 SDRV3: DW DRV3FR ;FORMATTED READ
0002 0042 00700 DW DRV3FW ;FORMATTED WRITE
0004 0013 20805 DW DRV3BR ;BINARY READ
0eg6 0010 20980 DW DRV3BW ;BINARY WRITE
0008 OOOE 21200 DW DRV3RE ;REWIND
000A DOOE ' 41100 DW DRV3BA ;BACKSPACE
000C OPOE 21200 DW DRV3EN ;ENDFILE
000E AF @1300 DRV3EN: XRA ;THESE OPERATIONS ARE
31400 ;NO-OPS FOR TTY
QU0E 015060 DRV3RE %8 DRV3EN
oo9E Co pi50 D|RVSBA B DRVIEN
0010 C3 0000 * 01800 DRV3BW: JMP SIOERR ;ILLEGAL OPERATTIONS
61900 ; (PRINT ERROR AND RETURN)
0010 02000 DRV3BR BQU DRV3BW
9013 AF 02100 DRV3FR: XRA A ;READ
0013 32 ggop * 02200 STA BL $ZERO BUFFER LENGTH
0017 CD 0008 * 02300 DRV3l: CALL g*rmn :INPUT A CHAR
091A E6 7F 02409 ANI 0177 :AND OFF PARITY
go1C FE 0A _ 02500 CPI 10 ;IQNORE LINE FEEDS
@01E CA 0017 02600 Jz DRV31
6021 F5 02700 PUSH DSW ;SAVE IT
0022 2A 0915 * 02800 LALD SBL ;GET CHAR POSIT IN BUFFER
I LA S
/
0028 27 0000 * 03160 LHLD .$BF ;GET BUFFER ADDR
0828 19 33200 DAD D :ADD OFFSET
002C Fl 03300 POP PSW :GET CHAR
202D /7 23400 MOV M,A sPUT IT IN BUFFER
. A A
0030 22 0023 * 23700 SHLD BL :SAVE IT
0033 FE 0D 03800 CPI 15 :CR?
0835 C8 33900 RZ : YES—DONE
@036 7D 040008 MOV AL ;SBL
2037 FE 80 04100 CPI 128 ;MAX IS DECIMAL 128
9039 DA 9017 ' 04200 C DRV3l ;GET NEXT CHAR
203C CD 0008 * 04300 CALL SERR
003F 12 04400 DB IRECER ;INPUT RECORD TOO LONG
it 28 cia 2 e s
0042 3A 00831 * 24700 DRV3FW: LDA SBL :BUFFER LENGTH
0645 B7 04800 ORA A
MACS0 1.0 PAGE 2
046 C8 94900 RZ sEMPTY BUFFER
047 72 9029 * 25000 LHLD SBF :BUFFER ADDRESS
g04a 3D 35100 DCR A :DECREMENT LENGTH
@04B F5 25 PUSH PSW :SAVE IT
g04C 3E @D 05360 MVI A,13 :CR
Q04E CD 0000 * 35400 CALL Sfryor :0UTPUT IT
2651 7B 05500 MOV M :GET FIRST CHAR IN BUFFER
0952 FE 2B 05600 CPI h
®
Radioe fhaek

251

MODEL 4 FORTRAN

uiotn
O ~ b

DSOS
SIS S vt
-~ NG DG PG ONOOH w
m.bt—'m%:b\om&wm?)‘

SNSRI RO
~EWNTIMO O W PO

SIS LIS TSTSTS]
COCOCOOD ~J~J~.

SIOERR
STTYIN

DRV3RE
DR3FW2

CA 0979 '
31
C2 0064 '

ac
CD 204r *
C3 3979 !

A
CD PO5F *

FE 20
CA 2079

30

C2 9879 '
OA

CD 0067 *

CD 0077 *

C3 0078 '

11* $BL

STTYOT
3! DRV3FW
! DRV3BA

0o

29
DRV3FR 08

000E

0079' DR3FW1

MAC80 1.0 PAGE

28
0000 *

0000 * 91300
0001 * 01500

~. IOV Un

UL (W NSO 0 \JO\W&WMH%%O} ~J

e e e e I I S T S S S S N S S S S I L TS IS T)
Bl IS I s S S S S N S S S T S S T S S S IS T e e)

QOO0 ~I~I~J
NSO 00 ~

DRV3BR
DRV3EN

=i

*

APPENDICES

DR3FW2 ;NO LINE FEEDS

DR3FW1l ;NOT FORM FEED
A,I%OT ; FORM FEED

;OUTPUT IT

A,10 ;LF

AM ;GET CHAR BACK
?%?FWZ ;NO MCRE LINE FEEDS
DR3FW2 fﬁg MORE LINE FEEDS

A,10 :

STTYOT

PSW ;GET LENGTH BACK
H s INCREMENT PTR
PSW ;SAVE CHAR COUNT
A,M ;GET NEXT CHAR
H ;INCREMENT PTR

;DECREMENT IT

A
DRV32 ;ONE MORE TIME

ERR 003D*
DRV3 00002’
DRV3BW 0910'
DRV31 6017'

DRIVER ADDRESSES FOR LUN'S 1 THROUGH 10

252

E 1 ;UNIT 2 IS LPT
E 1 ;UNITS 6-10 ARE DSK
7 , ;DTC COMMUNICATIONS UNIT
ENTRY SLUNTB
EXT DRV3
DB 13 sMAX LUN + 1
DW SDRV3 ;THEY ALL POINT TO $DRV3 FOR NOW
IFF LET
DW SDRV3
ENDIF
IFT LPT
EXT LPTDRV
DW LPTDRV
ENDIF
DW SDRV3
IFF DIC
®
Radie fhaek

MODEL 4 FORTRAN

APPENDICES

0005 *

0009
0009 00097 *
0003

2008
000B
200B
0goB 0000 *
g@oD 00@B *
POOF @0@D *
0011 Q@PF *
o133 0011 *
0015
0P15

MACS80 1

S S S S S ST S S TS LS S ST

RO RN RO B bt b i ot o ok

~INULE W NSRS D IO

S S IS IS TSRS

SIS S S S S S S N S SIS SR T R Y

Shoaees

W WL NN
WSO
QSRR

PAGE

DSK 2001
LPTDRV 0003*

TRS-80 °
DW SDRV3
ENDIF
IFT DIC
EXT MDRV
DW MDRV
ENDIF
DW $DRV3
IFF DSK
DW DRV3
DW DRV3
DW DRV3
DW DRV3
DW DRV3
ENDIF
IFT DSK
EXT DSKDRV
DW DSKDRV
DW DSKDRV
DW DSKDRV
DW DSKDRV
DW DSKDRV
ENDIF
END

DTC 0000 SLUNTB 0000'
DSKDRV 0013*

Radie fhaek

253

MODEL 4 FORTRAN APPENDICES

TRS-80°

C/ Subprogram Linkages

This appendix defines a normal subprogram call as generated
by the FORTRAN Compiler. It is included to facilitate
linkages between FORTRAN programs and those written in other
languages, such as Z8f Assembly.

A subprogram reference with no parameters generates a simple
CALL instruction. The corresponding subprogram should
return via a simple RET. (CALL and RET are 278§ opcodes.)

A subprogram reference with parameters results in a somewhat
more complex calling sequence. Parameters are always passed
by reference (that is, the thing passed is actually the
address of the low bytes of the actual argument).

Therefore, parameters always occupy two bytes each,
regardless of type.

The method of passing the parameters depends on the number
of parameters to pass:

1. If the number of parameters is fewer than or equal
to three, they are passed in the registers.
Parameter 1 is in HL, 2 in DE (if present), and 3
in BC (if present).

2. If the number of parameters is more than 3, they
are passed as follows:

a. Parameter 1 in HL.

b. Parameter 2 in DE.

c. Parameters 3 through n in a contiguous data
block. BC points to the low byte of this data
block (that is, to the low byte of parameter

3).

Note that, with this scheme, the subprogram must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. Neither the Compiler nor
the runtime system checks for the correct number of
parameters.

Radie fhaek

254

MODEL 4 FORTRAN APPENDICES
TRS-80 °

If the subprogram expects more than three parameters and

needs to transfer them to a local data area, a system
subroutine performs this transfer.

This argument transfer routine is named $AT and is called

with HL pointing to the local data area, BC pointing to the
third parameter, and A containing the number of arguments to
transfer (that is, the total number of arguments minus 2).

The subprogram is responsible for saving the first two parameters
before calling $AT. For example, if a subprogram

expects five parameters, it should appear as follows:

SUBR: LD (P1) ,HL ;SAVE PARAMETER 1
EX DE,HL
LD (P2) ,HL ;SAVE PARAMETER 2
LD A,3 ;NO. OF PARAMETERS LEFT
LD HL,P3 s POINTER TO LOCAL AREA
CALL $AT ; TRANSFER THE OTHER THREE PARAMETERS

.

°

{Body of subprogram}

.

RET sRETURN TO CALLER
Pl: DS 2 ;SPACE FOR PARAMETER 1
P2: DS 2 ;SPACE FOR PARAMETER 2
P3: DS 6 ;SPACE FOR PARAMETERS 3-5

When accessing parameters in a subprogram, don't forget that
they are pointers to the actual arguments passed.

Important Note: You must see that the arguments in the
calling program match in number, type, and length with the
parameters the subprogram expects. This applies to FORTRAN
subprograms and those written in assembly language.

Radie Sfhaek
255

MODEL 4 FORTRAN APPENDICES

TRS-80°

FORTRAN functions return their values in registers and
memory, depending on the type. Logical results are returned
in (A), Integers in (HL), Reals in memory at $AC, and Double
Precision in memory at $DAC. $AC and $DAC are the addresses
of the low bytes of the mantissas.

Radio fhaek
256

MODEL 4 FORTRAN APPENDICES

TRS-80 °
D/ ASCII Character Codes
DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
gag NUL g43 + g86 \%
991 SOH ga4a . g87 W
gg2 STX g45 - @88 X
g493 ETX g46 . #89 Y
gaa EOT @47 / gog Z
g95 ENQ ga8 g g91 [
gge ACK #49 1 g92 /
g97 BEL g59 2 g93]
ggs BS g51 3 994 -
@499 HT 952 4 g95 <
g1g LF @53 5 g96 '
g11 VT 954 6 g997 a
912 FF g55 7 798 b
g13 CR #56 8 #99 c
g14 I{e} @457 9 199 d
g15 SI @58 : 191 e
g16 DLE 759 ; 192 f
@17 DC1 gegd < 193 g
g18 DC2 g6l = 194 h
g19 DC3 g62 > 195 i
g29 DC4 763 ? 196 3
@21 NAK 764 @ 197 k
g22 SYN 965 A 198 1
g23 ETB 766 B 199 m
g24 CAN 967 C 119 n
g25 EM 768 D 111 o
g26 SUB g69 E 112 p
g27 ESCAPE g7g F 113 q
g28 FS g71 G 114 r
#29 GS 7972 H 115 s
@439 RS 973 I 116 t
#31 Us g74 J 117 u
#32 SPACE g75 K 118 v
g33 ! g76 L 119 w
g34 U 977 M 129 X
#35 # 778 N 121 y
g36 S 279 0 122 4
937 $ g8y P 123 {
g38 & g81 Q 124
#39 : 782 R 125 }
gag (g83 S 126
@41) g84 T 127 DEL
g4a2 * 785 U

LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

Radio fhaek

257

MODEL 4 FORTRAN APPENDICES

TRS-80 ¢

E/ FORLIB Arithmetic Library Subroutines

The FORTRAN-8f library contains a number of subroutines that
you may reference from FORTRAN or assembly programs. In the
following descriptions, $AC referes to the floating
accumulator; $AC is the address of the low byte of the
mantissa. $AC+3 is the address of the exponent. $DAC
refers to the double precision accumulator; $DAC is the
address of the low byte of the mantissa. $DAC+7 is the
address of the double precision exponent.

All arithmetic routines (addition, subtraction,
multiplication, division, exponentiation) adhere to the
following calling conventions:

1. Argument 1 is passed in the registers:
Integer in {HL}
Real in S$AC

Double in $DAC
2. Argument 2 is passed either in registers or in

memory, depending on the type:

a. Integers are passed in {HL} or in {DE} if {HL}
contains Argument 1.
b. Real and double precision values are passed

in memory pointed to by {HL}. ({HL} points
to the low byte of the mantissa.)

The following arithemetic routines are contained in the
Library:

Function Name Argument 1 Type Argument 2 Type
Addition $AA Real Integer
$AB Real Real
$AQ Double Integer
$AR Double Real
$AU Double Double
®
Radio fhaek

258

MODEL 4 FORTRAN

APPENDICES

TRS-80°
Division $D9 Integer
S$SDhA Real
SDB Real
$DQ Double
$DR Double
$DU Double
Exponentiation $E9 Integer
SEA Real
SEB Real
$EQ Double
SER Double
$EU Double
Multiplication $M9 Integer
SMA Real
SMB Real
$MQ Double
$MR Double
SMU Double
Subtraction $SA Real
$SB Real
$SQ Double
$SR Double
$SU Double

Integer
Integer
Real
Integer
Real
Double

Integer
Integer
Real

Integer
Real -
Double

Integer
Integer
Real
Integer
Real
Double

Integer
Real
Integer
Real
Double

Additional library routines are provided for converting
between value types. Arguments are always passed to and
returned by these conversion routines in the appropriate

registers:

Logical in {A}
Integer in {HL}
Real in S$AC

Double in $DAC

Radio fhaek
259

MODEL 4 FORTRAN APPENDICES

TRS-80 °
Name Function
$CA Integer to Real
$CC Integer to Double
SCH Real to Integer
$CJd Real to Logical
$CK Real to Double
$CX Double to Integer
$CY Double to Real
$CZ Double to Logical
®
Radie fhaek

264

MODEL 4 FORTRAN APPENDICES

TRS-80

F/ Output File Format

Compilers and assemblers should ignore the line numbers and
page marks included in the Editor output files (except when
included in the listing files).

A line number consists of five decimal digits followed by a
tab character.

A page mark is a line-feed character with the high-order bit
equal to one.

Radie fhaek

261

MODEL 4 FORTRAN APPENDICES

TRS-80 °
G/ Storage Format
Type Allocation
Integer two bytes/ 1/2 storage unit
S Binary Value

Negative numbers are the two's complement of
positive representations. The storage order is
reversed. The least significant byte is
followed by the most significant byte.

LOGICAL one byte/ 1/4 storage unit

Zero (false) or nonzero (true)

A nonzero valued byte indicates true (the
logical constant .TRUE. 1is represented by the
hexadecimal value FF). A zero valued byte
indicates false.

When used as an arithmetic value, a Logical
datum is treated as an Integer in the range
-128 to +127.

REAL four bytes/ one storage unit
Characteristic S Mantissa (hi)
Mantissa (mid) Mantissa (low)

The first byte is the characteristic expressed in excess 20§
(octal) notation; that is, a value of 20d (octal)
corresponds to a binary exponent of f. Values less than 2¢¢
(octal) correspond to negative exponents, and values greater
than 2@@ correspond to positive exponents. By definition,
if the characteristic is zero, the entire number is zero.

The next three bytes constitute the mantissa. The mantissa
is always normalized such that the high order bit is one,
eliminating the need to actually save that bit. The high
bit is used instead to indicate a negative number, and zero
indicates a positive number. The mantissa is assumed to be

Radie Shaek

262

MODEL 4 FORTRAN APPENDICES

TRS-80 °

a binary fraction of the binary point of which is to the left
of the mantissa. The format of the mantissa is "signed
magnitude." The bytes are stored in reverse order:

mantissa low order, followed by mid order, high order, and
characteristic.

DOUBLE eight bytes

PRECISION
The internal form of double precision data is

identical with that of Real data except
double precision uses four extra bytes for
the mantissa.

INTEGER*4 four bytes
Negative numbers of represented in two's
complement form. The bytes are stored in
reverse order, least significant to most

significant.

Radie fhaek
263

MODEL 4 FORTRAN APPENDICES

TRS-80°

H/ Format of Link-Compatible Object Files

Link-Compatible object files consist of a bit stream. A bit
stream is the I/O "stream" of binary digits that represent
data in coded form.

Use of a bit stream for relocatable object files keeps the
size of the object files to a minimum, thereby decreasing
the number of diskette read/writes you have to do.

Individual fields within the bit stream are not aligned on
byte boundaries, except as noted below.

The two types of load items are Absolute (the actual
addresses of information expressed in machine code) and
Relocatable (a program coded in such a way that it can be
stored and executed in any part of memory). The first bit
of an item indicates one of these two types. If the first
bit is a f, the following eight bits are loaded as an
absolute byte. If the first bit is a 1, the next two bits
are used to indicate one of four types of relocatable items:

o9 Special Linker item (see below).

21 Program Relative. Loads the following 16
bits after adding the current Program base.

19 19 Data Relative. Loads the following 16
bits after adding the current Data base.

11 Common Relative. Loads the following 16
bits after adding the current Common base.

Special Linker items consist of the bit stream 1gF followed
by:

5 a four-bit control field

: an optional A field consisting of a two-bit
address type that is the same as the two-bit field
above except @ specifies absolute address.

Radio fhaek

264

MODEL 4 FORTRAN APPENDICES

TRS-80°

. an optional B field consisting of three bits that
give a symbol length and up to eight bits for each
character of the symbol.

A general representation of a special Linker item is:

1 @@ xxxx Yy nn zz2z + characters of symbol name

A field B field

xxXxXx Four-bit control field (g-15 below)

Yy
nn

222

The

W N S

The
a B

w3 A

The

10
11
12

Two~bit address type field
Sixteen-bit value
Three-bit symbol length field

following special types have a B-field only:

Entry symbol (name for search)
Select COMMON block

Program name

Request library search
Reserved for future expansion

following special Linker items have both an A field and
field:

Define COMMON size

Chain external (A is head of address chain, B is name
of external symbol)

Define entry point (A is address, B is name)

Reserved for future expansion

following special Linker items have an A field only:

External + offset. The A value will be added to the
two bytes starting at the current location counter.
Define size of Data area (A is size)

Set loading location counter to A

Chain address. A is head of chain, replace all
entries in chain with current location counter.

The last entry in the chain has an address field of
absolute zero.

Radio Shaek

265

MODEL 4 FORTRAN APPENDICES
TRS-80 °

13 Define program size (A is size)
14 End program (forces to byte boundary)

" The following special Linker item has neither an A or a B
field:

15 End file

Radio Shaek

266

MODEL 4 FORTRAN APPENDICES
TRS-80° -

I/ MACRO-8§ Assembler

Assembly language programs and subroutines are assembled with
MACRO-8f. Just as the FORTRAN compiler generates relocatable
object code from a FORTRAN program, MACRO-8(generates
relocatable object code from an assembly language program.
Running MACRO-8f is very similar to running the FORTRAN compiler,
and the command format is identical. The default extension for a
MACRO-8¢ source file is /MAC.

1 Running MACRO-88

When you give TRSDOS the command:
M8¢

you are running the MACRO-8J assembler. When the
assembler is ready to accept commands, it prompts you
with an asterisk. To exit the assembler, use the <BREAK>
key. ~

Command lines are also supported by MACRO-8§. After
executing a command line, the assembler automatically
exits to the operating system.

1.1 Command Format

An assembler command conveys the name of the source file
you want to assemble and the options you want to use.
Following is the format for an assembler command (square
brackets indicate optional):

[object filenamel [,1isting filenamel=source filename[-switch...]

Note: All filenames must be in TRSDOS filename format:
filename[/ext] [.password] [:drive#]. If you are using
the assembler's default extensions, it is not necessary
to specify an extension in an assembler command.

Radio fhaek

267

MODEL 4 FORTRAN APPENDICES

TRS-80°

Note each individual part of the assembler command:

155

Object filename /

To create a relocatable object file, this part of the
command must be included. It is simply the name that
you want to call the object file. The default
extension for the object filename is /REL.

Listing filename

To create a listing file, this part of the command
must be included. It is simply the name that you
want to call the.listing file. The default extension
for the listing file is /LST.

Source filename

An assembler command must always include a source
filename--this is the way the assembler "knows" the
material to assemble. It is simply the name of a
MACRO-88 program you have saved on disk. The default
extension for a MACRO-8f source filename is /MAC.

The source filename is always preceded by an equal
sign in an assembler command.

Examples (asterisk is typed by M8{):

*=TEST Assemble the program TEST/MAC

without creating an object file or
listing file.

*TEST, TEST=TEST Assemble the program TEST/MAC.

Create a relocatable object file
called TEST/REL and a listing file
called TEST/LST.

*, TEST.PASS=TEST.PASS Assemble the program TEST/MAC.PASS

and create a listing file called
TEST/LST.PASS. (No object file is
created.)

Radie fhaek

268

MODEL 4 FORTRAN APPENDICES

TRS-80 °

*TESTOBJ=TEST Assemble the program TEST/MAC and
create an object file called
TESTOBJ/REL. (No listing file is
created.)

4. Switch
A switch on the end of a command specifies a special
parameter to be used during assembly. Switches are
always preceded by a dash (-). More than one switch
may be used in the same command. The available
switches are:

Switch Action
0 Print all listing addresses in octal.
H Print all listing addresses in hexadecimal

(default condition).

C Force generation of a cross reference
file.
Z Assemble Z8f (Zilog format) mnemonics

(default condition).

I Assemble 8¢80 mnemonics.

Examples:

*CT.ME,CT.ME=CT.ME-O Assemble the program
CT/MAC.ME. Create a listing
file called CT/LST.ME and an
object file called CT/REL.ME.
The addresses in the listing
file will be in octal.

Radio fhaek

269

MODEL 4 FORTRAN APPENDICES
TRS-80 °

*LT,LT=LT-C Assemble the program LT/MAC.
Create an object file called
LT/REL, a listing file called
LT/LST, and a cross reference
file called LT/CRF. (See
Section 12.)

1.2 Linkage to FORTRAN Programs

To link an assembly language subroutine to a FORTRAN
program, use the following format:

L8y
*PROG,MYASM, PROG-N-E

In this example, MYASM is the name of the assembly
language subroutine, and PROG/REL is the name of the
FORTRAN program. MYASM/REL cannot be assembled with an
END <label> statement.

Radio fhaek

279

MODEL 4 FORTRAN APPENDICES

TRS-80 °

2.1

Format of MACRO-8J Source Files

In general, MACRO-8§ accepts a source file that is almost
identical to source files for INTEL compatible
assemblers. Input source lines of up to 132 characters
in length are acceptable.

MACRO-80 preserves lowercase letters in quoted strings
and comments. All symbols, opcodes, and pseudo-opcodes
typed in lowercase will be converted to uppercase.

Note: If the source file includes line numbers from an
editor, each byte of the line number must have the high
bit on. Line numbers from Microsoft's EDIT-80 Editor are
acceptable.

Statements

Source files input to MACRO-8f consist of statements of
the form:

[label:[:]] [operator] [arguments] [;comment]

With the exception of the ISIS assembler $ controls, it
is not necessary that statements begin in Column 1.
Multiple blanks or tabs may be used to improve
readability. .

If a label is present, it is the first item in the
statement and is immediately followed by a colon. If it

is followed by two colons, it is declared as PUBLIC.

(See ENTRY/PUBLIC, Section 5.1¢.) For example:
FOO:: RET

is equivalent to:

PUBLIC FOO
FOO: RET

Radioe fhaek

271

MODEL 4 FORTRAN APPENDICES

TRS-80 °

2.2

The next item after the label (or the first item on the
line i, no label is present) is an operator. An operator
may be an opcode (808§ or Z8¢ mnemonic), pseudo-op, macro
call or expression. The evaluation order is:

1. Macro call

2. Opcode/Pseudo operation

3. Expression

Instead of flagging.an expression as an error, the
assembler treats it as if it were a DB statement. (See

Section 5.4.)

The arguments following the operator will, of course,
vary in form according to the operator.

A comment always begins with a semicolon and ends with a
carriage return. A comment may be a line by itself, or
it may be appended to a line that contains a statement.

Extended comments can be entered using the .COMMENT
pseudo operation. (See Section 5.19.)

Symbols

MACRO-8¢ symbols may be of any length; however, only the
first six characters are significant. The following
characters are legal in a symbol:

The underline character is also legal in a symbol. A
symbol cannot start with a digit. When a symbol is read,
lowercase is translated into uppercase. If a symbol
reference is followed by ##, it is declared external.
(See also the EXT/EXTRN pseudo-op, Section 5.12.)

Radio fhaek

272

MODEL 4 FORTRAN APPENDICES

TRS-80 °

2.3

Numeric Constants

The default base for numeric constants is decimal. This
may be changed by the .RADIX pseudo-op. (See Section
5.21.) Any base from 2 (binary) to 16 (hexadecimal) may
be selected. When the base is greater than 1§, A-F are
the digits following 9. If the first digit of the number
is not numeric (such as A-f), the number must be preceded
by a zero. This eliminates the use of zero as a leading
digit for octal constants, as in previous versions of
MACRO-8(.

Numbers are 16-bit unsigned quantities. A number is
always evaluated in the current radix unless you use one
of the following special notations:

nnnnB Binary
nnnnD Decimal
nnnnO Octal

nnnnQ Octal

nnnnH Hexadecimal
X'nnnn!' Hexadecimal

Overflow of a number beyond two bytes is ignored, and the
result is the low order 16-bits.

A character constant is a string comprised of zero and
one or two ASCII characters, delimited by quotation marks
and used in a non-simple expression. For example, in the
statement:

DB 'A' + 1

'A' is a character constant. However, the statement:
DB 'A!

uses 'A' as a string because it is in a simple

expression. The rules for character constant delimiters
are the same as for strings.

Radio fhaek

273

MODEL 4 FORTRAN APPENDICES

2.4

TRS-80 °

A character constant comprised of one character has as
its value the ASCII value of that character. That is,
the high order byte of the value is zero, and the low
order byte is the ASCII value of the character. For
example, the value of the constant, 'A', is 41H.

A character constant comprised of two characters has as
its value the ASCII value of the first character in the
high order byte and the ASCII value of the second
character in the low order byte. For example, the value
of the character constant, "AB", is 41H*256+42H.

Strings

A string is comprised of zero or more characters
delimited by quotation marks. Either single or double
quotation marks may be used as string delimiters. The
delimiter quotes may be used as characters if they appear
twice for every character occurrence desired. For
example, the statement:

DB III am {1} great " today!l
stores the string:
I am "great" today

If there are zero characters between the delimiters, the
string is a null string.

Radie fhaek

274

MODEL 4 FORTRAN APPENDICES

TRS-80 °

3.1

3.2

Expression Evaluation

Arithmetic and Logical Operators

The following operators are allowed in expressions. The
operators are listed in order of precedence.

NUL

LOW, HIGH

*, /, MOD, SHR, SHL
Unary Minus

+, -

EQ, NE, LT, LE, GT, GE
NOT

AND

OR, XOR

Parentheses are used to change the order of precedence.
During evaluation of an expression, as soon as a new
operator is encountered having precedence less than or
equal to the last operator encountered, all operations up
to the new operator are performed. That is,
subexpressions involving operators of higher precedence

are computed first.

All operators except +, -, *, and / must be separated
from their operands by at least one space.

The byte isolation operators (HIGH, LOW) isolate the high
or low order 8 bits of an Absolute 16-bit value. If a
relocatable value is supplied as an operand, HIGH and LOW
treat it as if it were relative to location zero.

Modes

All symbols used as operands in expressions are in one of
the following modes: Absolute, Data Relative, Program
(Code) Relative, or COMMON. (See Section 5 for the ASEG,
CSEG, DSEG, and COMMON pseudo-ops.) Symbols assembled
under the ASEG, CSEG (default), or DSEG pseudo-ops are in

Radie fhaek

275

MODEL 4 FORTRAN APPENDICES
TRS-80 °

Absolute, Code Relative, or Data Relative modes,
respectively. The number of COMMON modes in a program is
determined by the number of COMMON blocks that are named
with the COMMON pseudo-op. Two COMMON symbols are not in
the same mode unless they are in the same COMMON block.

In any operation other than addition or subtraction, the
mode of both operands must be Absolute.

If the operation is addition, the following rules apply:
1. At least one of the operands must be Absolute.
2. Absolute + <mode> = <mode>

If the operation is subtraction, the following rules
apply:

1. <mode> - Absolute = <mode>

2. <mode> - <mode> = Absolute, where the two <moded>s are
the same.

Each intermediate step in the evaluation of an expression

must conform to the above rules for modes; otherwise, an
error is generated. For example, if FOO, BAZ, and ZAZ
are three Program Relative symbols, the expression:

FOO + BAZ -~ ZAZ

generates an R error because the first step (FOO + BAZ)
adds two relocatable values. (One of the values must be
Absolute.) This problem can always be remedied by
inserting parentheses. The expression:

FOO + (BAZ - ZAZ)

is legal because the first step (BAZ - ZAZ) generates an
Absolute value that is then added to the Program Relative
value, FOO.

Radie fhaek

276

MODEL 4 FORTRAN APPENDICES

3.3

TRS-80 °

Externals

Aside from its classification by mode, a symbol is either
External or not External. (See EXT/EXTRN, Section 5.12.)
An External value must be assembled into a two-byte
field. (Single-byte Externals are not supported.) The
following rules apply to the use of Externals in
expressions.

1. Externals are legal only in addition and subtraction.

2. If an External symbol is used in an expression, the
result of the expression is always External.

3. When the operation is addition, either operand (but
not both) may be External.

4. When the operation is subtraction, only the first
operand may be External.

Radie fhaek

277

MODEL 4 FORTRAN APPENDICES

TRS-80°
4 Opcodes as Operands

808¢ opcodes are valid one-byte operands. Note that only
the first byte is a valid operand. For example:

MVI A, (JMP)
ADI (CPI)

MVI B, (RNZ)
CPI (INX H)
ACI (LXI B)
MVI C,MOV 2,B

Errors are generated if more than one byte is included
in the operand--such as (CPI 5), (LXI B,LABELl), or (JMP
LABEL2).

Opcodes used as one-byte operands need not be enclosed in
parentheses.

Note: Opcodes are not valid operands in Z8@ mode.

Radie fhaek

278

MODEL 4 FORTRAN APPENDICES

TRS-80 °

Pseudo Operations

ASEG
ASEG

ASEG sets the location counter to an absolute segment of
memory. The location of the absolute counter will be
that of the last ASEG to change the location. The effect
of ASEG is also achieved by using the code segment (CSEG)
pseudo operation and the -P switch in LINK-8f. See also
Section 5.27.

COMMON
COMMON /<block name>/

COMMON sets the location counter to the selected common
block in memory. The location is always the beginning of
the area so that compatibility with the FORTRAN COMMON
statement is maintained. If <block name> is omitted or
consists of spaces, it is considered to be blank common.
See also Section 5.27.

CSEG
CSEG

CSEG sets the location counter to the code relative
segment of memory. The location will be that of the last
CSEG (default is f), unless an ORG is done after the CSEG
to change the location. CSEG is the default condition of
the assembler. (The INTEL assembler defaults to ASEG.)
See also Section 5.27.

Radie fhaek

279

MODEL 4 FORTRAN APPENDICES

TRS-80°
5.4 Define Byte
DB <exp>[,<exp>...]
DB <string>[<string>...]

The arguments to DB are either expressions or strings.
DB stores the values of the expressions or the characters
cf the strings in successive memory locations, beginning
with the current location counter.
Expressions must evaluate to one byte. (If the high byte
of the result is f or 255, no error is given; otherwise,
an A error results.)
Strings of three or more characters may not be used in
expressions. (That is, they must be immediately followed
by a comma or by the end of the line.) The characters in
a string are stored in the order of appearance, each as a
one-byte value with the high order bit set to zero.
Example:

goga: 4142 DB 'AB'

gog2r 42 DB '"AB' AND @FFH

goa3 41 42 43 DB 'ABC'

5.5 Define Character

DC <string>

DC stores the characters in <string> in successive memory
locations, beginning with the current location counter.
As with DB, characters are stored in order of appearance,
each as a one-byte value with -the high order bit set to
zero. However, DC stores the last character of the
string with the high bit set to one. An error results is
the argument to DC is a null string.

Radio fhaek

289

MODEL 4 FORTRAN APPENDICES

TRS-80 °

Define Space

DS <exp>

DS reserves an area of memory. The value of <exp> gives
the number of bytes to be allocated. All names used in
<exp> must be previously defined (that is, all names
known at that point on pass 1). Otherwise, a V error is
generated during pass 1, and a U error may be generated
during pass 2. If a U error is not generated during pass

2, a phase error will probably be generated because the

DS generated no code on pass 1.

DSEG
DSEG

DSEG sets the location counter to the Data Relative
segment of memory. The location of the data relative
counter will be that of the last DSEG (default is §),
unless an ORG is done after the DSEG to change the
location. See also Section 5.27.

Define Word

DW <exp>[,<exp>...]
DW stores the values of the expressions in successive
memory locations beginning with the current location

counter. Expressions are evaluated as 2-byte (word)
values.

END

END [<exp>]

The END statement specifies the end of the program. If
<exp> is present, it is the start address of the program.

Radio fhaek

281

MODEL 4 FORTRAN APPENDICES

TRS-80°

If <exp> is not present, then no start address is passed
to LINK-8J for that program.

ENTRY/PUBLIC

ENTRY <name>[,<name>...]

or
PUBLIC <name>[,<name>...]

ENTRY or PUBLIC declares each name in the list as
internal and therefore available for use by this program
and other programs to be loaded concurrently. All the
names in the list must be defined in the current program;
otherwise, a U error results. An M error is generated if
the name is an external name or common-blockname.

EQU
<name> EQU <exp>

EQU assigns the value of <exp> to <name>. If <exp> is
external, an e€rror is generated. If <name> already has a
value other than <exp>, an M error is generated.

EXT/EXTRN

EXT <name>[,<name>...]

or
EXTRN <name>[,<name>...]

EXT or EXTRN declares that the name(s) in the list are
external (that is, defined in a different program). If
any item in the list references a name that is defined in
the current program, an M error results. A reference to
a name in which the name is immediately followed by two
pound signs (such as NAME##) also declares the name as
external.

Radie fhaek

282

- MODEL 4 FORTRAN APPENDICES

TRS-80 °

5.13

5.14

NAME
NAME (‘'modname’')

NAME defines a name for the module. Only the first six
characters are significant in a module name. A module
name may also be defined with the TITLE pseudo-op. In
the absence of both the NAME and TITLE pseudo-ops, the
module name is created from the source file name.

Define Origin

ORG <exp>

The location counter is set to the value of <exp>, and
the assembler assigns generated code starting with that
value. All names used in <exp> must be known on pass 1,

‘and the value must either be absolute or in the same area

as the location counter.

PAGE
PAGE [<exp>]

PAGE causes the assembler to start a new output page.
The value of <exp>, if included, becomes the new page
size (measured in lines per page) and must be in the
range 1§-255. The default page size is 5@ lines per
page. The assembler puts a form feed character in the
listing file at the end of a page.

SET

<name> SET <exp>

SET is the same as EQU except that no error is generated
if <name> is already defined.

Radie fhaek

283

MODEL 4 FORTRAN APPENDICES

TRS-80 °

SUBTTL
SUBTTL <text>

SUBTTL specifies a subtitle to be listed on the line
after the title on each page heading. (See TITLE,
Section 5.18.) <text> is truncated after 6§ characters.
Any number of SUBTTLs may be given in a program.

TITLE
TITLE <text>

TITLE specifies a title to be listed on the first line of
each page. If more than one TITLE is given, a Q error
results. The first six characters of the title are used
as the module name unless a NAME pseudo operation is
used. If neither a NAME nor TITLE pseudo-op is used, the
module name is created from the source file name.

.COMMENT
«COMMENT <delim><text><delim>

The first non-blank character encountered after .COMMENT
is the delimiter. The following <text> comprises a
comment block that continues until the next occurrence of
<delimiter> is encountered. For example, using an
asterisk as the delimiter, the format of the comment
block would be:

. COMMENT *
any amount of text entered here as the comment

block

%

:return to normal mode

Radie Shaek

284

MODEL 4 FORTRAN APPENDICES

TRS-80°

. PRINTX

«PRINTX <delim><text><delim>

The first non-blank character encountered after .PRINTX
is the delimiter. The following text is listed on the
terminal during assembly until another occurrence of the
delimiter is encountered. .PRINTX is useful for
displaying progress through a long assembly or for
displaying the value of conditional assembly switches.
For example:

IF CPM
.PRINTX /CPM version/
ENDIF

Note: .PRINTX will output on both passes. If only one
printout is desired, use the IFl or IF2 pseudo-op.

- RADIX
«RADIX <exp>

The default base (or radix) for all constants is decimal.
The .RADIX statement allows the default radix to be
changed to any base in the range 2-16. For example:

ILXI H,@FFH
.RADIX 16
LXI H,dFF

The two LXIs in the example are identical. The.<exp> in
a .RADIX statement is always in decimal radix, regardless
of the current radix.

Radie fhaek

285

MODEL 4 FORTRAN APPENDICES

TRS-80 °

.REQUEST
.REQUEST <filename>[,<filename>...]

.REQUEST sends a request to the LINK-8f loader to search
the filenames in the list for undefined globals before
searching the FORTRAN library. The filenames in the list
should be in the form of legal MACRO-8f symbols. They
sould not include filename extensions or disk
specifications. The LINK-8f loader supplies its ‘default
extension and assumes the currently selected disk drive.

.28¢

. 280 enables the assembler to accept Z8@ opcodes. This

is the default condition. Z8@ mode may also be set by
appending the Z switch to the MACRO-8J command
string--see Section 1.2.

. 8980

.8080 enables the assembler to accept 8¢8¢ opcodes. 8@8f
mode may also be set by appending the I switch to the
MACRO-8# command string--see Section 1.2.

Conditional Pseudo Operations

The conditional pseudo operations are:

IF/IFT <exp> True if <exp> is not #.

IFE/IFF <exp> True if <exp> is #.

IFl True if pass 1.

IF2 True if pass 2.

IFDEF <symbol> True if <symbol> is defined or has

been declared External.

Radie fhaek

286

MODEL 4 FORTRAN APPENDICES
TRS-80 °

IFNDEF <symbol> True if <symbol> is undefined or
not declared External.

IFB <arg> True if <arg> is blank. The angle
brackets around <arg> are required.

IFNB <arg> True if <arg> is not blank. Used
for testing when dummy parameters
are supplied. The angle brackets
around <arg> are required.

All conditionals use the following format:

IFxx [argument]

. 1
ENDIF

Conditionals may be nested to any level. Any argument to
a conditional must be known on pass 1 to avoid V errors
and incorrect evaluation. For IF, IFT, IFF, and IFE, the
expression must involve values that were previously
defined, and the expression must be absolute. If the
name is defined after an IFDEF or IFNDEF, pass 1
considers the name to be undefined, but it is defined on

pass 2.

ELSE

Each conditional pseudo operation may optionally be used
with the ELSE pseudo operation that allows alternate code
to be generated when the opposite condition exists. Only
one ELSE is permitted for a given IF, and an ELSE is
always bound to the most recent, open IF. A conditional
with more thanone ELSE or an ELSE without a conditional
causes a C error.

Radie Shaek

287

MODEL

4 FORTRAN APPENDICES

TRS-80 °

ENDIF

Each IF must have a matching ENDIF to terminate the
conditional. Otherwise, an 'Unterminated conditional!
message is generated at the end of each pass. An ENDIF
without a matching IF causes a C error.

Listing Control Pseudo Operations

Output to the listing file can be controlled by two
pseudo-ops:

.LIST and . XLIST

If a listing is not being made, these pseudo-ops have no
effect. L.LIST is the default condition. When a .XLIST
is encountered, source and object code is not listed
until a .LIST is encountered.

The output of cross reference information is controlled
by .CREF and .XCREF. If the cross reference facility
(Section 12) has not been invoked, .CREF and .XCREF have
no effect. The default condition is .CREF. When a-
.XCREF is encountered, no cross reference information is
output until .CREF is encountered.

The output of MACRO/REPT/IRP/IRPC expansions is
controlled by three pseudo-ops: .LALL, .SALL, and .XALL.
.LALL lists the complete macro text for all exapnsions.
.SALL lists only the object code produced by a macro and
not its text. .XALL is the default condition; it is
similar to .SALL except that a source line is listed only
if it generates object code.

Relocation Pseudo Operations

The ability to create relocatable modules is one of the
major features of MACRO-8J. Relocatable modules offer
the advantages of easier coding and faster testing,
debugging, and modifying. In addition, it is possible to
specify segments of assembled code that will later be

Radio fhaek

288

MODEL 4 FORTRAN APPENDICES

TRS-80 °

loaded into RAM (the Data Relative segment) and ROM/PROM
(the Code Relative segment). The pseudo operations that
select relocatable areas are CSEG and DSEG. The ASEG
pseudo-op is used to generate non-relocatable (absolute)
code. The COMMON pseudo-op creates a common data area
for every COMMON block named in the program.

The default mode for the assembler is Code Relative.

That is, assembly begins with a CSEG automatically
executed and the location counter in the Code Relative
mode, pointing to location f in the Code Relative segment
of memory. All subsequent instructions will be assembled
into the Code Relative segment of memory until an ASEG or
DSEG or COMMON pseudo-op is executed. For example, the
first DSEG encountered sets the location counter to
location @ in the Data Relative segment of memory. The
following code is assembled in the Data Relative mode,
that is, it is assigned to the Data Relative segment of
memory. If a subsequent CSEG is encountered, the
location counter returns to the next free location in the
Code Relative segment, and so on.

The ASEG, DSEG, and CSEG pseudo-ops never have operands.
If you wish to alter the current value of the location
counter, use the ORG pseudo-op.

ORG Pseudo-op

At any time, the value of the location counter may be
changed by use of the ORG pseudo-op. The form of the ORG
statement is:

ORG <exp>

where the value of <exp> will be the new value of the
location counter in the current mode. All names used in
<exp> must be known on pass 1, and the value of <exp>
must be either Absolute or in the current mode of the
location counter. For example, the statements:

DSEG
ORG 50

Radio Sfhaek

289

MODEL 4 FORTRAN APPENDICES

TRS-80 °©

set the Data Relative location counter to 5@, relative
to the start of the Data Relative segment of memory.

LINK-8¢

The LINK—BQ linking loader (Chapter 4 of this manual)

combines the segments and creates each relocatable module
in memory when the program is loaded. The origins of the
relocatable segments are not fixed until the program is
loaded, and the origins are assigned by LINK-8g. The
command to LINK-8f may contain user-specified origins
through the use of the -P (for Code Relative) and -D (for
Data and COMMON segments) switches.

For example, a program that begins with the statements:

ASEG
ORG 80gH

and is assembled entirely in Absolute mode always loads
beginning at 8¢f unless the ORG statement is changed in
the source file. However, the same program, assembled in
Code Relative mode with no ORG statement, may be loaded
at any specified address by appending the -P:<address>
switch to the LINK-8¢ command string.

Relocation Before Loading

Two pseudo-ops, .PHASE and .DEPHASE, allow code to be
located in one area but executed only at a different,
specified area.

For example:

ao9g: .PHASE 190H
9199 CD g1¢6 FOO: CALL BAZ
g1¢3 Cc3 ppg7! JMP Z00
g1g6 c9 BAZ: RET
.DEPHASE
gog7 C3 gggs Z00: JMP 5
Radie fhaek

29¢

MODEL 4 FORTRAN APPENDICES
TRS-80 °

All labels within a .PHASE block are defined as the
absolute value from the origin of the phase area. The
code, however, is loaded in the current area (that is,
from @' in this example). The code within the block can
later be moved to 1¢@H and executed.

Radie fhaek

291

MODEL 4 FORTRAN APPENDICES

TRS-80 °¢

Macros and Block Pseudo Operations

The macro facilities provided by MACRO-8F include three
repeat pseudo operations: repeat (REPT), indefinite
repeat (IRP), and indefinite repeat character (IRPC). A
macro definition operation (MACRO) is also provided.
Each of these four macro operations is terminated by the
ENDM pseudo operation.

Terms

For the purpose of discussion of macros and block
operations, the following terms will be used:

1. <dummy> is used to represent a dummy parameter. All
dummy parameters are legal symbols that appear in the
body of a macro expansion.

2. <dummylist> is a list of <dummy>s separated by
commas.

3. <arglist> is a list of arguments separated by commas.
<arglist> must be delimited by angle brackets. Two
angle brackets with no intervening characters (<>) or
two commas with no intervening characters enter a
null argument in the list. Otherwise, an argument is
a character or series of characters terminated by a
comma or >. With angle brackets that are nested
inside an <arglist>, one level of brackets is removed
each time the bracketed argument is used in an
<arglist>. (See the example in Section 6.5.) A
qguoted string is an acceptable argument and is passed
as such. Unless enclosed in brackets or a gquoted
string, leading and trailing spaces are deleted from
arguments.

4. <paramlist> is used to represent a list of actual
parameters separated by commas. No delimiters are
required (the list is terminated by the end of line
or a comment), but the rules for entering null
parameters and nesting brackets are the same as

Radio fhaek

292

MODEL 4 FORTRAN APPENDICES
TRS-80 °

described for <arglist>. (See the example in Section
6'50)

6.2 REPT-ENDM

REPT <exp>

ENDM

The block of statements between REPT and ENDM is repeated
<exp> times. <exp> is evaluated as a 16-bit unsigned
number. If <exp> contains any external or undefined
terms, an error is generated. Example:

X SET /]

REPT 19 ;generates DBl1-DBlf#
X SET X+1

DB X

ENDM

6.3 IRP-ENDM

IRP <dummy>,<arglist>

.

ENDM

The <arglist> must be enclosed in angle brackets. The
number of arguments in the <arglist> determines the
number of times the block of statements is repeated.
Each repetition substitutes the next item in the
<arglist> for every occurrence of <dummy> in the block.
If the <arglist> is null (that is, <>), the block is
processed once with each occurrence of <dummy> removed.
For example:

Radio fhaek

293

MODEL 4 FORTRAN APPENDICES
TRS-80 °

IRP X,<1,2,3,4,5,6,7,8,9,19>
DB X
ENDM

generates the same bytes as the REPT example.

6.4 IRPC—~ENDM

IRPC <dummy>,string (or <string>)

ENDM

IRPC is similar to IRP, but the arglist is replaced by a
string of text, and the angle brackets around the string
are optional. The statements in the block are repeated
once for each character in the string. Each repetition
substitutes the next character in the string for every
occurrence of <dummy> in the block. For example:

IRPC X,0123456789
DB X+1
ENDM

generates the same code as the two previous examples.

6.5 MACRO

Often, it is convenient to be able to generate a given
sequence of statements from various places in a program,
even though different parameters may be required each
time the sequence is used. This capability is provided
by the MACRO statement. The form is:

<name> MACRO <dummylist>

ENDM

Radie fhaek

294

MODEL 4 FORTRAN APPENDICES
TRS-80 °

where <name> conforms to the rules for forming symbols.
<name> is the name that will be used to invoke the macro.
The <dummy>s in <dummylist> are the parameters that will
be changed (replaced) each time the MACRO is invoked.

The statements before the ENDM comprise the body of the
macro. During assembly, the macro is expanded every time
it is invoked, but, unlike REPT/IRP/IRPC, the macro is
not expanded when it is encountered.

The form of a macro call is:
<name> <paramlist>

where <name> is the name supplied in the MACRO
definition, and the parameters in <paramlist> will
replace the <dummy>s in the MACRO <dummylist> on a
one-to-one basis. The number of items in <dummylist> and
<paramlist> is limited only by the length of a line. The
number of parameters used when the macro is called need
not be the same as the number of <dummy>s in <dummylist>.
If there are more parameters than <dummy>s, the extras
are ignored. If there are fewer, the extra <dummy>s are
made null. The assembled code contains the macro
expansion code after each macro call.

Note: A dummy parameter in a MACRO/REPT/IRP/IRPC is
always recognized exclusively as a dummy parameter.

Register names, such as A and B, are changed in the

expansion if they were used as dummy parameters.

Following is an example of a MACRO definition that
defines a macro called FOO:

FOO MACRO X

Y SET g
REPT X
Y SET Y+1
DB Y
ENDM
ENDM
®
Radie Sfhaek

295

MODEL 4 FORTRAN | APPENDICES

TRS-80°

This macro generates the same code as the previous three
examples when the call:

FOO 19
is executed.

Another example, which generates the same code,
illustrates the removal of one level of brackets when an
argument is used as an arglist:

FOO MACRO X

IRP Y, <X>
DB Y
ENDM

ENDM

When the call:
FOO <l]2'3y4,5,6'7,8'9'lg>
is made, the macro expansion looks like this:

IRP Y,<1,2,3,4,5,6,718,9,lﬁ>
DB Y
ENDM

ENDM

Every REPT, IRP, IRPC, and MACRO pseudo-op must be
terminated with the ENDM pseudo-op. Otherwise, the .
'"Unterminated REPT/IRP/IRPC/MACRO' message is generated
at the end of each pass. An unmatched ENDM causes an O
error.

EXITM

The EXITM pseudo-op is used to terminate a REPT/IRP/IRPC
or MACRO call. When an EXITM is executed, the expansion
is exited immediately, and any remaining expansion or

Radie fhaek

296

MODEL 4 FORTRAN APPENDICES

TRS-80 °

repetition is not generated. 1If the block containing the
EXITM is nested within another block, the outer level
continues to be expanded.

LOCAL
LOCAL <dummylist>

The LOCAL pseudo-op is allowed only inside a MACRO
definition. When LOCAL is executed, the assembler
creates a unique symbol for each <dummy> in <dummylist>
and substitutes that symbol for each occurrence of the
<dummy> in the expansion. These unique symbols are
usually used to define a label within a macro, thus
eliminating multiply-defined labels on successive
expansions of the macro. The symbols created by the
assembler range from ..@@@gl to ..FFFF. You will
therefore want to avoid the form ..nnnn for your own
symbols. If LOCAL statements are used, they must be the
first statements in the macro definition.

Special Macro Operators and Forms

& The ampersand is used in a macro expansion to
concatenate text or symbols. A dummy parameter
that is in a quoted string will not be substituted
in the expansion unless it is immediately preceded
by & To form a symbol from text and a dqummy, put
& between them. For example:

ERRGEN MACRO X
ERROR&X: PUSH B

MVI B,'&X'
JMP ERROR
ENDM
®
Radie fhaek

297

MODEL 4 FORTRAN

APPENDICES

TRS-80 °

-e
~8

NUL

In this example, the call ERRGEN A generates:

ERRORA: PUSH B
MVI B,'A'
JMP ERROR

In a block operation, a comment preceded by two
semicolons is not saved as part of the expansion
(that is, will not appear on the listing, even
under.LALL). A comment preceded by one semicolon,
however, is preserved and appears in the
expansion.

When an exclamation point is used in an argument,
the next character is entered literally. (That
is, !; and <;> are equivalent.)

NUL is an operator that returns true if its
argument (a parameter) is null. The remainder of
a line after NUL is considered to be the argument
to NUL. The conditional:

IF NUL argument

is false if, during the expansion, the first
character of the argument is anything other than a
semicolon or carriage return. We recommend that
you test for null parameters using the IFB and
IFNB conditionals.

Radio fhaek

298

MODEL 4 FORTRAN APPENDICES
TRS-80 °

7 Using Z8f¢ Pseudo-ops

The following Z8@ speudo ops are valid. The function of
each pseudo-op is equivalent to that of its 8p8g@

counterpart.

Z8¢ Pseudo-op Equivalent 8@8f Pseudo-op
COND IFT
ENDC ENDIF
*EJECT PAGE
DEFB DB
DEFS DS
DEFW DW
DEFM DB
DEFL SET
GLOBAL PUBLIC
EXTERNAL EXTRN

The formats, where different, conform to the 8¢8f format.
That is, DEFB and DEFW are permitted a list of arguments
(as are DB and DW), and DEFM is permitted a string or
numeric argument (as is DB).

Radio fhaek —

299

MODEL 4 FORTRAN

8

Sample Assembly

TRSDOS READY

M8g

*EXMPL1 , TTY=EXMPL1

gogg’
gogL’
gog2:
ggg3"

goga’
ggge’

ge97!

gogs:
g999"
gggn’

gepgB’

gagc!
gogF’

2919
gg11e
gp12e
ggi3e

MAC80 3.44

7E
23
66
6F

g6
AF

29

17
85
6F

g5

c2
EB

73
23
72
C9

g3

pggge’

PAGE

309

TRS-80

1

99199
go2p9
pa399
go4agg
gg459
go5909
ggepy
go799
pgosgy
29900
p1Lpgg
g1199
91200
91399
g14g¢g
g1sgg
glegg
pgL7g9
91809
91909
92999
#2100
92200
#2399
92400
g25099
g260¢
#2799
g2800
g29g¢g

Radie fhaek

APPENDICES

;CSL3(P1,P2)
sSHIFT Pl LEFT CIRCULARLY 3
sRETURN RESULT IN P2

ENTRY CSL3
sGET VALUE OF FIRST PARAMET
CSL3:

MOV A,M

INX H

MOV H,M

MOV L,A
;SHIFT COUNT

MVI B,3
LOOP: XRA A
sSHIFT LEFT

DAD H
;ROTATE IN CY BIT

RAL

ADD L

MOV L,A
s DECREMENT COUNT

DCR B
;ONE MORE TIME

JINZ LOOP

XCHG
sSAVE RESULT IN SECOND PARAl

MOV M,E

INX H

MOV M,D

RET

END

MODEL 4 FORTRAN APPENDICES
TRS-80°

MAC8f 3.44 PAGE S

CSL3 ggggI" LOOP gpge!’

No Fatal error(s)

Note: ©Use the -I switch if you assemble this routine.

Radio fhaek

301

MODEL 4 FORTRAN APPENDICES
TRS-80 °

9 MACRO-8# Errors

MACRO-8f errors are indicated by a one-character flag in
column one of the listing file. If a listing file is not
being printed on the terminal, each erroneous line is
also printed or displayed on the terminal. Following is
a list of the MACRO-80 error codes.

A Argument error
Argument to pseudo-op is not in correct format or
is out of range (.PAGE 1; .RADIX 1; PUBLIC 1;
STAX H; MOV M,M; INX C).

C Conditional nesting error
ELSE without IF, ENDIF without IF, two ELSEs on
one IF.

D Double defined symbol

Reference to a symbol that is multiply defined.

E External error
Use of an external illegal in context (for
example, FOO SET NAME##; MVI A,2-NAME##) .

M Multiply defined symbol
Definition of a symbol that is multiply defined.

N Number error
Error in a number, usually a bad digit (for
example, 8Q).

o) Bad opcode or objectionable syntax
ENDM, LOCAL outside a block; SET, EQU, or MACRO
without a name; bad syntax in an opcode (MOV A:);
or bad syntax in an expression (mismatched
parenthesis, quotes, consecutive operators, and so
on).

P Phase error
Value of a label or EQU name is different on pass
2.

Radio fhaek

392

MODEL 4 FORTRAN APPENDICES
TRS-80 °

Q Questionable
Usually means that a line is not terminated
properly. This is a warning error (for example,

MOV A,B,).

R Relocation
Illegal use of relocation in expression, such as
abs-rel. Data, code, and COMMON areas are

relocatable.

U Undefined symbol
A symbol referenced in an expression is not
defined. (For certain pseudo-ops, a V error is

printed on pass 1 and a U on pass 2.)

v Value error
On pass 1, a pseudo-op that must have its value
known on pass 1 (for example, .RADIX, .PAGE, DS,
IF, IFE, and so on) has a value that is undefined.
If the symbol is defined later in the program, a U
error will not appear on the pass 2 listing.

Error Messages:

'No end statement encountered on input file'
No END statement; either it is missing, or it is
not parsed due to being in a false conditional,
unterminated IRP/IRPC/REPT block or terminated
macro.

'Unterminated conditional!
At least one conditional is unterminated at the

end of the file.

'Unterminated REPT/IRP/IRPC/MACRO'
At least one block is unterminated.

[xx] [No] Fatal error(s) [,xx warnings]
The number of fatal errors and warnings. The
message is listed on the CRT and in the list file.

Radio fhaek

343

MODEL 4 FORTRAN APPENDICES

TRS-80 °

19

Compatibility with Other Assemblers

The $EJECT and $TITLE controls are provided for
compatibility with INTEL's ISIS assembler. The dollar
sign must appear in Column 1 only if spaces or tabs
separate the dollar sign from the control word. The
control:

$EJECT
is the same as the MACRO-8f PAGE pseudo-op. The control:

STITLE('text')
is the same as the MACRO-8f SUBTTL <text> pseudo-op.

The INTEL operands, PAGE and INPAGE, generate Q errors
when used with the MACRO-8¢ CSEG or DSEG pseudo-ops.
These errors are warnings; the assembler ignores the
operands.

When you enter MACRO-8§, the default for the origin is
Code Relative @. With the INTEL ISIS assembler, the
default is Absolute #.

With MACRO-80, the dollar sign ($) is a defined constant
that indicates the value of the location counter at the
start of the statement. Other assemblers may use a
decimal point or an asterisk. Other constants are
defined by MACRO-8J to have the following values:

A=7 =g c=1 D=2 E=3
H=4 =5 M=6 SP=6 PSW=6

Radio fhaek

304

MODEL 4 FORTRAN APPENDICES

TRS-80 °

11

Format of Listings

On each page of a MACRO-8f listing, the first two lines
have the form:

[TITLE text] MAC8¢ 3.2 PAGE x[-yl
[SUBTTL text]

where:

l. TITLE text is the text supplied with the TITLE
pseudo-op, if one was given in the source program.

2. x is the major page number, which is incremented only
when a form feed is encountered in the source file.
(When using Microsoft's EDIT-8J text editor, a form
feed is inserted whenever a page mark is done.) When
the symbol table is being printed, x = 'S"'.

3. y is the minor page number, which is incremented
whenever the .PAGE pseudo-op is encountered in the
source file, or whenever the current page size has
been filled.

4. SUBTTL text is the text supplied with the SUBTTL
pseudo-op if one was given in the source program.

Next, a blank line is printed, followed by the first line
of output.

A line of output on a MACRO-8f listing has the following
form:

[crE#] [error] loc#m XX XXXX oo source

If cross reference information is being output, the first
item on the line is the cross reference number, followed
by a tab.

A one-letter error code followed by a space appears next
on the line if the line contains an error. If there is
no error, a space is printed. If there is no cross

Radio fhaek

305

MODEL 4 FORTRAN APPENDICES

TRS-80 °

11.1

reference number, the error code column is the first
column on the listing.

The value of the location counter appears next on the
line. It is a four-digit hexadecimal number or six-digit
octal number, depending upon whether the -0 or -H switch
was given in the MACRO-8f command string.

The character at the end of the location counter value is
the mode indicator. It is one of the following symbols:

. Code Relative

" Data Relative

! COMMON Relative
<space> Absolute

* External

Next, three spaces are printed, followed by the assembled
code. One-byte values are followed by a space. Two-byte
values are followed by a mode indicator. Two-byte values
are printed in the opposite order from the order in which
they are stored, that is, the high order byte is printed
first. Externals are either the offset or the value of
the pointer to the next External in the chain.

The remainder of the line contains the line of source
code as it was input.

Symbol Table Listing

In the symbol table listing, all the macro names in the
program are listed alphabetically, followed by all the
symbols in the program, listed alphabetically. After
each symbol, a tab is printed, followed by the value of
the symbol. If the symbol is Public, an I prints
immediately after that value. The next character printed
is one of the following:

U Undefined symbol.

Radie fhaek

306

MODEL 4 FORTRAN APPENDICES
TRS-80 °

C COMMON block name. (The "value" of the COMMON
block is its length, or number of bytes, in
hexadecimal or octal.) :

b « External symbol.

<space> Absolute value.

v Prbgram;Relative value.

"o . Dpata Reiative value.

COMMON Relative value.

Son

Radio fhaek

397

MODEL 4

FORTRAN APPENDICES
TRS-80 °

12

Cross Reference Facility

The Cross Reference Facility is invoked by typing CREF8f§
at TRSDOS command level. To generate a cross reference
listing, the assembler must output a special listing file
with embedded control characters. The MACRO-8¢ command
string tells the assembler to output this special listing
file. (See Section 5.26 for the .CREF and .XCREF
pseudo-ops.) =-C is the cross reference switch. When the
-C switch is encountered in a MACRO-8¢ command string,
the assembler opens a /CRF file instead of a /LST file.

Examples:

*, TEST=TEST~C Assemble the file TEST/MAC and
create cross reference file
TEST/CRF.

*T, U=TEST~C Assemble file TEST/MAC and create

object file T/REL and cross
reference file U/CRF.

When the assembler is finished, you must call the cross
reference facility by typing CREF8f. (CREF8f is on
Diskette #1). CREF8f command format is:

*listing file=source file

The default extension for the source file is /CRF. The
-L switch is ignored, and any other switch causes an
error message to be sent to the terminal.

Example:

*T=TEST Examine fie TEST/CRF and generate
a cross reference listing file
T/LST."

Cross reference listing files differ from ordinary
listing files in that:

Radie Shaek

398

MODEL 4 FORTRAN

APPENDICES

TRS-80°

Each source statement is numbered with a cross
reference number.

At the end of the listing, variable names appear in
alphabetic order along with the numbers of the lines
on which they are referenced or defined. Line
numbers on which the symbol is defined are flagged

with '4'.

Radio fhaek

399

MODEL 4 FORTRAN APPENDICES

TRS-80 °

13

Output to Display or Printer

To make the listing file gd to the display or printer
rather than to disk, use the following format:

*,output device=source file

where output device is TTY (display) or LPT (printer).

Examples:
*, TTY=TEST Assemble file TEST/MAC and
' output a listing file to the
display. :

*, LPT=TEST Assemble file TEST/MAC and
output a listing file to the
printer.

*TEST, TTY=TEST Assemble file TEST/MAC; create

a disk file, TEST/REL; output
a listing file to the display.

Radio fhaek

319

4
MODEL 4 FORTRAN TRS-80 °

INDEX

ABS 188, 19g, 237
accessing subroutines
A command 28, 36, 228
A field 109
AINT 188, 209,
ALEDIT 23, 37
ALEDIT Command Mode Keys, Table 1
<left arrow> 27
<down arrow> 27
<up arrow> 27
<CTRL><A> 27
<CTRL> 27
<.> 27
#1ine<ENTER>
<BREAK> 27
<SHIFT> 27
<up arrow> 27
ALEDIT Editor Commands, Table 2
current line 28
del 28
string
text
28
28
del stringl del string2
del occurrence 28
29
29
del string del occurrence
3¢
3¢
31
31
31
filespec $C
TEST $C 32
32
32
33
33

139

237

27

28
28

31

HOoZ AR UHIINOHMED QW

311

39

Radie fhaek

INDEX

27

28

MODEL 4 FORTRAN

INDEX

TRS-80 °

33
33
33
33
33
W filespec S$optionl... 33
options 34
E 34
L, ML, or IM 34
M 34
ALEDIT Line Edit Mode Special Keys 37
<SPACEBAR> 37
<SHIFT><up arrow> 37
<right arrow> 37
<left arrow> 37
<ENTER> 37
ALEDIT Line Edit Mode Subcommands 36
A 36
E 36

Hstring 36
Istring 36
L 36
nCstring 36

nDstring 36
nKcharacter 36

nScharacter 37
Q 37
Xstring 37
ALOG 188, 281, 237
ALOGlg 188, 2¢1, 237
AMAX@ 188, 2¢3, 237
AMAX1 188, 2¢3, 237
AMINgG 188, 295, 237
AMIN1 188, 2¢5, 237
AMOD 188, 286, 237
.AND. 92
ANSI 59, 247
arrays 143
declarators 65
declarator statements 69
variables 81-82
arithmetic

<CHWO

Radio fhaek

312

MODEL 4 FORTRAN
TRS-80 °

INDEX

expressions 87-88
hierarchy 93-94
IF 163
operators 87
ASCII character codes 257
ASSIGN 64, 136
assigned GO TO 162
assignment statements 83
ATAN 188, 191, 237
ATAN2 188, 192, 237
B command 28
BLOCK DATA 66, 128, 137, 237
Boolean logic 92
buffers 95
BYTE 65, 76, 138, 166, 237
byte data 75
CALL 63, 125, 127, 135, 139, 237
CALL OPEN 96, 171
CALL OUT 238
CALL POKE 174, 238
calling convention 47
carriage controls 98
carriage control character 155
carriage control statements 112-13
C command 28
C del stringl del string2 del occurrence

/CMD 19
coding sheet 62
command file 19, 58
Command Mode 24-26

T 25

1 26

2 26

O 26

D 26
common logarithm 202
COMMON

DATA storage 85

statements 69, 238

storage 129

variable storage 85
compiler 13, 22, 39-49

28

Radio fhaek

313

MODEL 4 FORTRAN INDEX

TRS-80°

commands 234
errors 217-2¢
runtime error message 2§
switches 41-49, 234
-H 42,234
-M 42, 46, 235
-N 21, 42, 44, 53, 234
-0 42
-P 46, 51, 54, 235-36
complex expression 87
complex logical expressions 92
computed GO TO 161
constants 75, 87
continuation line 72
continuation marker 61
CONTINUE 64, 68, 141, 147, 238
control statement 63, 72
cos 122, 188, 193, 238
creating FUNCTIONS 188-89
current line command 28
cursor position 25-28, 33, 36-37
DABS 188, 19¢, 238
data 75-86
DATA 142, 238
data files 95-119
data initialization statements 66, 69
DATAN 188, 191, 238
DATAN2 188, 192, 238
DATA statements 46, 84
data types 75
DBLE 188, 238, 294
D command 29
DCOS 188, 238, 293
declaration statement 148
DECODE 64, 143-44, 239
default 54, 166
definition statements 66-67, 69
del (delete) command 28
delimiters 98, 117
DEXP 196, 239
D field 191

Radio fhaek

314

MODEL 4 FORTRAN

INDEX

TRS-80 °

DIM 188, 195, 239
DIMENSION 65, 145, 152, 239
direct addressing 118-19
disk memory editor 24
DLOG 188, 2g1-g2, 239
DLOGlg 239
DMAX1 188, 203, 239
DMIN1 188, 285, 239
DMOD 188, 2¢6, 239
DO 63, 146-48, 244
DO loops 68, 178
double precision
data 75-76, 1@3-104
numbers 78
statement 63, 101, 148
-D switch 54, 236
DSIGN 188, 2¢8, 248
DSIN 188, 209, 24¢
DSQRT 188, 211, 248
E command 25, 29, 34
E field 102
editor 11-13, 23-38
editor errors 222-23
-E switch 19, 51, 236
ENCODE 64, 157, 248
END 64, 158, 249
END= 115-16, 177
END statement 69
ENDFILE 64, 159, 244
ENDFILE command 97
<ENTER> special key 37
.EQ. 9¢
EQUIVALENCE 66, 69, 152-53, 248
EQUIVALENCE statement 85, 132-33
ERR= 115-16, 177, 185
evaluation hierarchy 88

executable statements 63-64, 69,
EXP 188, 196, 248
exponential notation 77
expressions 84, 87-94
extended integer data 75
extended integers 76
®
Radio fhaek

315

135, 164

MODEL 4 FORTRAN INDEX

TRS-80°

extended integer variable 169
extension 15

EXTERNAL 154, 248

EXTERNAL statements 69

F8¢ 13, 39, 125

F8f commands 39

.FALSE. 79

F command 30

F FORMAT field 1¢g2-g3

field
descriptors 99, 155-56
fields 95

separators 156
specification 7¢
filename 12
files 95-119
filespec 23, 38
FLOAT 188, 198, 244
floating point 74
/FOR 14
FORLIB/REL 17, 95
format
data 79
I/0 155
label 115
specification 7¢, 112
statement 7@-71, 155
FORTRAN
character set 61
functions 87-88, 187-212
source programs 23
statements 12, 61, 65, 135-86
FUNCTION 67, 122-23, 158, 241
FORLIB Arithmetic Library Subroutines 258-6§
G command 3§
G descriptor 104
G fields 185
.GE. 9¢
globals 2@, 49
GOTO 63, 67, 168-62, 241
.GT. 9
H command 3¢

Radie fhaek

316

MODEL 4 FORTRAN INDEX

TRS-80°

H descriptor 185
H field 1¢5
hexadecimal data 75
hexadecimal notation 17
hexadecimal numbers 8§
H FORMAT descriptor 1#6
Hstring 36
-H switch 42, 234
hyperbolic tangent 212
IABS 188, 195, 241
I command 24-25, 31
identification field 61-62
IDIM 188, 195, 241
IDINT 188, 2¢9¢, 241
IF 63, 163-64, 241
I fields 106
IFIX 188, 197, 241
IMPLICIT 65, 166, 241
IMPLICIT declaration 81
INCLUDE 63, 167, 241
SINIT 16, 45
initialize routine 46
INP 64, 188, 199, 241
input/output 45

device 95

fields 97

interface 249

ports 172

statements 63, 70
Insert mode 24
INT 188, 289, 241
integer data 75
integers 106 T
INTEGER 64-65, 75-76, 166, 168, 242, 262
INTEGER*4 65, 166, 169, 263 :
intra-program branching 66-67
ISIGN 188, 208, 242
I specifications 106
J command 31
K command 31, 36
L8g 18, 49
L command 31, 36, 231

Radie fhaek

317

MODEL 4 FORTRAN INDEX

TRS-80 °

Language Extensions and Restrictions 247
L descriptor 197
.LE. 90
L fields 107
library function 122
line edit mode 24, 35
LINK
LINK-8g 18
link-compatible object files 264
linker 18, 39, 49-56
commands 5@, 236
errors 224-26
switches 51-56, 236
-D 54, 236 -
-N 21, 42, 44, 53, 234
-P 46, 51, 54, 235-36
-R 51, 55, 236
-S 51, 55, 236
-U 55, 236
listing addresses 44
listing file 16, 41, 45
literal
data 75
expression 94
literals 79
logical
data 75
expressions 87
IF 91
logical units 95
logical unit number 95
operands 92
operators 92
statement 65, 79, 187, 166, 178, 242, 262
looping 146
IM 34
LT. 99
L TEST 31-32
LUN 95-96, 112, 116, 151, 171, 177, 189
SLUNTB 47, 248
$MAIN 13, 131

Radio Sfhaek

318

MODEL 4 FORTRAN INDEX

TRS-80 °

MAX@ 188, 203, 242
MAX1 188, 203, 242

M command 32, 34
memory location 16, 152
MINg 188, 205, 242
MIN1 188, 2@5, 242
ML 34

MOD 188, 206, 242

-M switch 42, 46, 235
natural logarithm 21
N command 32, 231

nCstring 36

nDstrin 36

. NE. 95

negative indicators 87
nKcharacter 36
nScharacter 37

-N switch 21, 42, 44, 53, 234
non-executable statements 64, 135
.NOT. 93

object file 18
occurrence 28

O command 33, 231

OPEN 135, 171, 242
OPEN SUBROUTINE 96
operands 87

operators 87

.OR. 92

originating address 17
-0 switch 42

ouT 64, 135, 172, 242
output fields 98
output file format 261
parameter blocks 46
parameters 124-33, 253-54
parentheses 156

PAUSE 63, 173, 242
pointer 182

POKE 25, 174, 242
positive indicators 87
print command (H) 3§
PROGRAM 66, 175, 243

Radio fhaek

319

MODEL 4 FORTRAN INDEX

TRS-80 °

program execution 18
program branching 66
pseudo-op 63
-P switch 46, 51, 54, 235-36
Q command 33, 37, 231
Quit command 13, 33, 231
RAN 176, 243
R command 33, 231
READ 64, 74, 95, 112-15, 177-79, 243
REAL 65, 178, 180, 243, 262
real data 75, 193-g4
real number 77
record length 96
REC= 112, 115, 177, 185
/REL 17
relational expressions 9§
relocatable
addresses 14, 17
data address 17
object code 14, 39
object file 14, 22, 4§, 264
program address 17
replacement line 74
replacement statements 62-63
RETURN 63, 181, 243
REWIND 182, 243
ROM 42, 46
-R switch 51, 55, 236
S command 37
scalar variables 81-82
scaling factor 108
search 37
segmenting programs 121-33
sequential addressing 117-19
SIGN 188, 209, 243
skipping spaces 109
SNGL 188, 21@, 243
source filespec 23-24
source program 14
specification list 110, 157
SQRT 122, 188, 243
-S switch 51, 55, 236

Radie fhaek

3290

MODEL 4 FORTRAN INDEX

TRS-80°

stack space 42
statement labels 61-62
statement order 69
STOP 63, 183, 243
storage

definers 66

definer statements 69

format 75, 262-63

stringl 28
string2 28

strings stored in variables 108
subprogram branching 66-67
subprogram linkages 254
SUBROUTINE 17, 66, 123-27, 184, 243
subroutine library requests 2§
subroutine requests 19
subscript 82-83

system library 55

TANH 188, 212, 244

T command 33, 231

termination 150

text command 28

trigonometric functions 122
TRSDOS command file 11

TRSDOS errors 215-16

. TRUE. 79

type specification statement 64, 69
U command 33

unconditional GO TO 164
undefined globals 2@, 49, 55
unformatted data 98

-U switch 55, 236

variable 75, 87

variable list 115

V command 33

W command 33, 232

WRITE 63-64, 68-69, 95, 115-16, 188, 244
W SAMPLE 34

W TEST 26

X command 35

X field 109

.XOR. 92

Radie fhaek

321

MODEL 4 FORTRAN INDEX

TRS-80°

Xstring 37
%z-8f¢ assembly language 17, 234

Z command 32

Radio fhaek

322

IMPORTANT NOTICE

(2 ik ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN
s, 5 “AS IS" BASIS WITHOUT WARRANTY.

300, 0.
\ees, 27"

Radio Shack shall have no liability or responsibility to customer or any
other person or entity with respect to any liability, loss or damage caused
or alleged to be caused directly or indirectly by computer equipment or
programs sold by Radio Shack, including but not limited to any interrup-
tion of service, loss of business or anticipatory profits or consequential
damages resulting from the use or-operation of such computer or
computer programs.

NOTE: Good data processing procedure dictates that the user test the
program, run and test sample sets of data, and run the systemin
parallel with the system previously in use for a period of time
adequate to insure that results of operation of the computer or
program are satisfactory.

RADIO SHACK SOFTWARE LICENSE

A. Radio Shack grants to CUSTOMER a non-exclusive, paid up license to
use on CUSTOMER'’S computer the Radio Shack computer software
received. Title to the media on which the software is recorded (cassette
and/or disk) or stored (ROM) is transferred to the CUSTOMER, but not
title to the software.

B. In consideration for this license, CUSTOMER shall not reproduce
copies of Radio Shack software except to reproduce the number of copies
required for use on CUSTOMER’S computer (if the software allows a
backup copy to be made), and shall include Radio Shack’s copyright
notice on all copies of software reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack’s system and applications soft-
ware (modified. or not, in whole or in part), provided CUSTOMER has
purchased one copy of the software for each one resold. The provisions
of this software License (paragraphs A, B, and C) shall also be applicable
to third parties purchasing such software from CUSTOMER.

<+ L8 0)
'qs c00)
{xXXD

RADIO SHACK A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM UK.
280-316 VICTORIA ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
RYDALMERE, NSW. 2116 5140 NANINNE WEST MIDLANDS WS10 7JN

PRINTED IN U.S.A.

	01.tif
	02.pdf
	03.pdf
	04.tif
	05.pdf
	06.pdf
	07.tif
	08.pdf
	09.pdf
	10.tif
	11.pdf
	12.pdf
	13.tif
	14.pdf
	15.pdf
	16.tif
	17.pdf
	18.pdf
	19.pdf
	20.pdf

